128
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Activation of cGAS-STING in Acute Kidney Injury

, , , , , & ORCID Icon show all
Pages 4461-4470 | Received 16 Jun 2023, Accepted 01 Sep 2023, Published online: 10 Oct 2023

References

  • Mulay SR, Linkermann A, Anders HJ. Necroinflammation in kidney disease. J Am Soc Nephrol. 2016;27(1):27–39. doi:10.1681/ASN.2015040405
  • Al-Jaghbeer M, Dealmeida D, Bilderback A, et al. Clinical decision support for in-hospital AKI. J Am Soc Nephrol. 2018;29(2):654–660. doi:10.1681/ASN.2017070765
  • Zhao M, Wang YZ, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11(4):1845–1863. doi:10.7150/thno.50905
  • Wang Z, Holthoff JH, Seely KA, et al. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol. 2012;180(2):505–516. doi:10.1016/j.ajpath.2011.10.011
  • Huang LS, Hong Z, Wu W, et al. mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity. 2020;52(3):475–486. doi:10.1016/j.immuni.2020.02.002
  • Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol. 2021;17(5):335–349. doi:10.1038/s41581-021-00394-7
  • Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–421. doi:10.1038/nrm3801
  • Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629–646. doi:10.1038/nrneph.2017.107
  • Smith JA. STING, the endoplasmic reticulum, and mitochondria: is three a crowd or a conversation? Front Immunol. 2020;11:611347. doi:10.3389/fimmu.2020.611347
  • Pan JS, Sheikh-Hamad D. Mitochondrial dysfunction in acute kidney injury and sex-specific implications. Med Res Arch. 2019;7(2). doi:10.18103/mra.v7i2.1898
  • Bi X, Du C, Wang X, et al. Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability. Adv Sci. 2021;8(5):2002738. doi:10.1002/advs.202002738
  • Chung KW, Dhillon P, Huang S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 2019;30(4):784–799. doi:10.1016/j.cmet.2019.08.003
  • Tammaro A, Kers J, Scantlebery A, et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration. Front Immunol. 2020;11:1346. doi:10.3389/fimmu.2020.01346
  • Gong W, Lu L, Zhou Y, et al. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am J Physiol Renal Physiol. 2021;320(4):F608–F616. doi:10.1152/ajprenal.00554.2020
  • Zhang X, Agborbesong E, Li X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. 2021;22:20.
  • Maekawa H, Inoue T, Ouchi H, et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 2019;29(5):1261–1273. doi:10.1016/j.celrep.2019.09.050
  • Andrade B, Jara-Gutierrez C, Paz-Araos M, et al. The relationship between reactive oxygen species and the cGAS/STING signaling pathway in the inflammaging process. Int J Mol Sci. 2022;23(23):15182. doi:10.3390/ijms232315182
  • Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy. 2023;19(2):401–414. doi:10.1080/15548627.2022.2084862
  • Qi X, Wang J, Fei F, et al. Myricetin-loaded nanomicelles protect against cisplatin-induced acute kidney injury by inhibiting the DNA Damage-cGAS-STING signaling pathway. Mol Pharm. 2023;20(1):136–146.
  • Jin L, Yu B, Armando I, et al. Mitochondrial DNA-mediated inflammation in acute kidney injury and chronic kidney disease. Oxid Med Cell Longev. 2021;2021:9985603. doi:10.1155/2021/9985603
  • Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med. 2017;107:216–227. doi:10.1016/j.freeradbiomed.2016.11.050
  • Bhatia D, Capili A, Choi ME. Mitochondrial dysfunction in kidney injury, inflammation, and disease: potential therapeutic approaches. Kidney Res Clin Pract. 2020;39(3):244–258. doi:10.23876/j.krcp.20.082
  • van der Slikke EC, Star BS, van Meurs M, et al. Sepsis is associated with mitochondrial DNA damage and a reduced mitochondrial mass in the kidney of patients with sepsis-AKI. Crit Care. 2021;25(1):36. doi:10.1186/s13054-020-03424-1
  • Kuwabara S, Goggins E, Okusa MD. The pathophysiology of sepsis-associated AKI. Clin J Am Soc Nephrol. 2022;17(7):1050–1069. doi:10.2215/CJN.00850122
  • Maekawa H, Inagi R, Nangaku M, Inoue T, Inoue R, Nishi H. SUN-155 mitochondrial DNA leakage causes inflammation via the cGAS-STING axis in cisplatin-induced acute kidney injury. Kidney Int Rep. 2019;4:S222. doi:10.1016/j.ekir.2019.05.556
  • Brinkkoetter PT, Bork T, Salou S, et al. Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 2019;27(5):1551–1566. doi:10.1016/j.celrep.2019.04.012
  • Zang N, Cui C, Guo X, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience. 2022;25(10):105145. doi:10.1016/j.isci.2022.105145
  • Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501–521. doi:10.1038/s41580-020-0244-x
  • Yu CH, Davidson S, Harapas CR, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183(3):636–649. doi:10.1016/j.cell.2020.09.020
  • Feng Y, Imam AA, Tombo N, et al. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion. Cells. 2022;11(12):1894. doi:10.3390/cells11121894
  • Zhong F, Liang S, Zhong Z. Emerging role of mitochondrial DNA as a major driver of inflammation and disease progression. Trends Immunol. 2019;40(12):1120–1133. doi:10.1016/j.it.2019.10.008
  • Ma JR, Liu ZB, Zhou SF, et al. Renal tubular in TCE-sensitization-induced immune kidney injury: role of mitochondrial DNA in activating the cGAS-STING signaling pathway. Int Immunopharmacol. 2022;2022:113.
  • Visitchanakun P, Kaewduangduen W, Chareonsappakit A, et al. Interference on Cytosolic DNA activation attenuates sepsis severity: experiments on cyclic GMP-AMP Synthase (cGAS) deficient mice. Int J Mol Sci. 2021;22(21):11450. doi:10.3390/ijms222111450
  • Feng J, Chen Z, Liang W, et al. Roles of Mitochondrial DNA damage in kidney diseases: a new biomarker. Int J Mol Sci. 2022;23(23):15166. doi:10.3390/ijms232315166
  • Jansen M, Pulskens WP, Butter LM, et al. Mitochondrial DNA is released in urine of SIRS patients with acute kidney injury and correlates with severity of renal dysfunction. Shock. 2018;49(3):301–310. doi:10.1097/SHK.0000000000000967
  • Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta. 2012;1819(9–10):921–929. doi:10.1016/j.bbagrm.2012.03.002
  • Bai JL, Liu F. The cGAS-cGAMP-STING pathway: a molecular link between immunity and metabolism. Diabetes. 2019;68(6):1099–1108. doi:10.2337/dbi18-0052
  • Hancock-Cerutti W, Wu Z, Xu P, et al. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. J Cell Biol. 2022;221(7). doi:10.1083/jcb.202106046
  • Vig S, Lambooij JM, Dekkers MC, et al. ER stress promotes mitochondrial DNA mediated type-1 interferon response in beta-cells and interleukin-8 driven neutrophil chemotaxis. Front Endocrinol. 2022;13:991632. doi:10.3389/fendo.2022.991632
  • Zhong W, Rao Z, Xu J, et al. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation. Aging Cell. 2022;21(6):e13622. doi:10.1111/acel.13622
  • Li JS, Hao YZ, Hou ML, et al. Development of a recombinase-aided amplification combined with lateral flow dipstick assay for the rapid detection of the African swine fever virus. Biomed Environ Sci. 2022;35(2):133–140. doi:10.3967/bes2022.018
  • Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol. 2022;18(9):558–572. doi:10.1038/s41581-022-00589-6
  • Heipertz EL, Harper J, Walker WE. STING and TRIF contribute to mouse sepsis, depending on severity of the disease model. Shock. 2017;47(5):621–631. doi:10.1097/SHK.0000000000000771
  • Domizio JD, Gulen MF, Saidoune F, et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature. 2022;603(7899):145–151. doi:10.1038/s41586-022-04421-w
  • Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–791. doi:10.1126/science.1232458
  • Tao J, Zhang XW, Jin J, et al. Nonspecific DNA Binding of cGAS N terminus promotes cGAS activation. J Immunol. 2017;198(9):3627–3636. doi:10.4049/jimmunol.1601909
  • Decout A, Katz JD, Venkatraman S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548–569. doi:10.1038/s41577-021-00524-z
  • Apel F, Andreeva L, Knackstedt LS, et al. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Sci Signal. 2021;14(673). doi:10.1126/scisignal.aax7942
  • Mankan AK, Schmidt T, Chauhan D, et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 2014;33(24):2937–2946. doi:10.15252/embj.201488726
  • Li X, Shu C, Yi G, et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity. 2013;39(6):1019–1031. doi:10.1016/j.immuni.2013.10.019
  • Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature. 2017;549(7672):394–398. doi:10.1038/nature23890
  • Luecke S, Holleufer A, Christensen MH, et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 2017;18(10):1707–1715. doi:10.15252/embr.201744017
  • Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361(6403):704–709. doi:10.1126/science.aat1022
  • Shang G, Zhang C, Chen ZJ, et al. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019;567(7748):389–393. doi:10.1038/s41586-019-0998-5
  • Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 2019;20(11):657–674. doi:10.1038/s41576-019-0151-1
  • Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol. 2014;88(10):5328–5341. doi:10.1128/JVI.00037-14
  • Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011. doi:10.3390/ijms20123011
  • Li J, Sun X, Yang N, et al. Phosphoglycerate mutase 5 initiates inflammation in acute kidney injury by triggering mitochondrial DNA release by dephosphorylating the pro-apoptotic protein Bax. Kidney Int. 2022;103(1):115–133.
  • Li Z, Liu Z, Luo M, et al. The pathological role of damaged organelles in renal tubular epithelial cells in the progression of acute kidney injury. Cell Death Discov. 2022;8(1):239. doi:10.1038/s41420-022-01034-0
  • Gao X, Wang J, Wang Y, et al. Fucoidan-ferulic acid nanoparticles alleviate cisplatin-induced acute kidney injury by inhibiting the cGAS-STING pathway. Int J Biol Macromol. 2022;223(Pt A):1083–1093. doi:10.1016/j.ijbiomac.2022.11.062
  • Liu S, Gao X, Wang Y, et al. Baicalein-loaded silk fibroin peptide nanofibers protect against cisplatin-induced acute kidney injury: fabrication, characterization and mechanism. Int J Pharm. 2022;626:122161. doi:10.1016/j.ijpharm.2022.122161
  • Mitrofanova A, Fontanella A, Tolerico M, et al. Activation of Stimulator of IFN Genes (STING) causes proteinuria and contributes to glomerular diseases. J Am Soc Nephrol. 2022;33(12):2153–2173. doi:10.1681/ASN.2021101286
  • Tsuji N, Tsuji T, Ohashi N, et al. Role of Mitochondrial DNA in Septic AKI via Toll-Like Receptor 9. J Am Soc Nephrol. 2016;27(7):2009–2020. doi:10.1681/ASN.2015040376
  • Gao X, Yin Y, Liu S, et al. Fucoidan-proanthocyanidins nanoparticles protect against cisplatin-induced acute kidney injury by activating mitophagy and inhibiting mtDNA-cGAS/STING signaling pathway. Int J Biol Macromol. 2023;245:125541. doi:10.1016/j.ijbiomac.2023.125541
  • Liu S, Gao X, Yin Y, et al. Silk fibroin peptide self-assembled nanofibers delivered naringenin to alleviate cisplatin-induced acute kidney injury by inhibiting mtDNA-cGAS-STING pathway. Food Chem Toxicol. 2023;177:113844. doi:10.1016/j.fct.2023.113844
  • Lu L, Liu W, Li S, et al. Flavonoid derivative DMXAA attenuates cisplatin-induced acute kidney injury independent of STING signaling. Clin Sci (Lond). 2023;137(6):435–452. doi:10.1042/CS20220728
  • Qi J, Luo Q, Zhang Q, et al. Yi-Shen-Xie-Zhuo formula alleviates cisplatin-induced AKI by regulating inflammation and apoptosis via the cGAS/STING pathway. J Ethnopharmacol. 2023;309:116327. doi:10.1016/j.jep.2023.116327
  • Luo S, Yang M, Han Y, et al. beta-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress. Int Immunopharmacol. 2022;111:109101. doi:10.1016/j.intimp.2022.109101
  • Ranoa D, Widau RC, Mallon S, et al. STING promotes homeostasis via regulation of cell proliferation and chromosomal stability. Cancer Res. 2019;79(7):1465–1479. doi:10.1158/0008-5472.CAN-18-1972
  • Liu J, Jia Z, Gong W. Circulating mitochondrial DNA stimulates innate immune signaling pathways to mediate acute kidney injury. Front Immunol. 2021;12:680648. doi:10.3389/fimmu.2021.680648
  • Ito S, Nakashima M, Ishikiriyama T, et al. Effects of L-carnitine treatment on kidney mitochondria and macrophages in mice with diabetic nephropathy. Kidney Blood Press Res. 2022;47(4):277–290. doi:10.1159/000522013
  • Myakala K, Jones BA, Wang XX, et al. Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in db/db mice and KKAy mice compared with valsartan treatment. Am J Physiol Renal Physiol. 2021;320(6):F1133–F1151. doi:10.1152/ajprenal.00614.2020
  • Zorova LD, Kovalchuk SI, Popkov VA, et al. Do extracellular vesicles derived from mesenchymal stem cells contain functional mitochondria? Int J Mol Sci. 2022;23(13):7408. doi:10.3390/ijms23137408
  • Zhao M, Liu SY, Wang CS, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS NANO. 2021;15(1):1519–1538. doi:10.1021/acsnano.0c08947
  • Liu Z, Sun Y, Qi Z, et al. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022;12(1):66. doi:10.1186/s13578-022-00805-7
  • Hernandez-Cruz EY, Amador-Martinez I, Aranda-Rivera AK, et al. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact. 2022;361:109961. doi:10.1016/j.cbi.2022.109961
  • Fan XY, Guo L, Chen LN, et al. Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng. 2022;6(4):339–350. doi:10.1038/s41551-022-00881-7