202
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Caffeine in Hepatocellular Carcinoma: Cellular Assays, Animal Experiments, and Epidemiological Investigation

, , , , & ORCID Icon
Pages 1589-1605 | Received 05 Jun 2023, Accepted 29 Feb 2024, Published online: 11 Mar 2024

References

  • de Alcântara Almeida I, Mancebo Dorvigny B, Souza Tavares L, Nunes Santana L, Vitor Lima-Filho J. Anti-inflammatory activity of caffeine (1,3,7-trimethylxanthine) after experimental challenge with virulent Listeria monocytogenes in Swiss mice. Int Immunopharmacol. 2021;100:108090. doi:10.1016/j.intimp.2021.108090
  • Dranoff JA. Coffee Consumption and Prevention of Cirrhosis: in Support of the Caffeine Hypothesis. Gene Expr. 2018;18(1):1–3. doi:10.3727/105221617X15046391179559
  • Estari RK, Dong J, Chan WK, Park MS, Zhou Z. Time effect of rutaecarpine on caffeine pharmacokinetics in rats. Biochem Biophys Rep. 2021;28:101121. doi:10.1016/j.bbrep.2021.101121
  • Singal AG, Kanwal F, Llovet JM. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat Rev Clin Oncol. 2023;20(12):864–884. doi:10.1038/s41571-023-00825-3
  • Helal MG, Ayoub SE, Elkashefand WF, Ibrahim TM. Caffeine affects HFD-induced hepatic steatosis by multifactorial intervention. Hum Exp Toxicol. 2018;37(9):983–990. doi:10.1177/0960327117747026
  • Tan X, Sun Y, Chen L, et al. Caffeine Ameliorates AKT-Driven Nonalcoholic Steatohepatitis by Suppressing De Novo Lipogenesis and MyD88 Palmitoylation. J Agric Food Chem. 2022;70(20):6108–6122. doi:10.1021/acs.jafc.2c01013
  • Alshabi AM, Alkahtani SA, Shaikh IA, Habeeb MS. Caffeine modulates pharmacokinetic and pharmacodynamic profiles of pioglitazone in diabetic rats: impact on therapeutics. Saudi Med J. 2021;42(2):151–160. doi:10.15537/smj.2021.2.25695
  • Jee HJ, Lee SG, Bormate KJ, Jung YS. Effect of Caffeine Consumption on the Risk for Neurological and Psychiatric Disorders: sex Differences in Human. Nutrients. 2020;12(10):3080. doi:10.3390/nu12103080
  • Godos J, Micek A, Marranzano M, Salomone F, Rio DD, Ray S. Coffee Consumption and Risk of Biliary Tract Cancers and Liver Cancer: a Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients. 2017;9(9):950. doi:10.3390/nu9090950
  • Wang Z, Gu C, Wang X, et al. Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med Oncol. 2019;36(12):97. doi:10.1007/s12032-019-1323-8
  • Wang Q, Dai X, Yang W, et al. Caffeine protects against alcohol-induced liver fibrosis by dampening the cAMP/PKA/CREB pathway in rat hepatic stellate cells. Int Immunopharmacol. 2015;25(2):340–352. doi:10.1016/j.intimp.2015.02.012
  • Yang Y, Wang H, Lv X, et al. Involvement of cAMP-PKA pathway in adenosine A1 and A2A receptor-mediated regulation of acetaldehyde-induced activation of HSCs. Biochimie. 2015;115:59–70. doi:10.1016/j.biochi.2015.04.019
  • Zhou K, Lim T, Dodge JL, Terrault NA, Wilkens LR, Setiawan VW. Population-attributable risk of modifiable lifestyle factors to hepatocellular carcinoma: the multi-ethnic cohort. Aliment Pharmacol Ther. 2023;58(1):89–98. doi:10.1111/apt.17523
  • Kennedy OJ, Roderick P, Buchanan R, Fallowfield JA, Hayes PC, Parkes J. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open. 2017;7(5):e013739. doi:10.1136/bmjopen-2016-013739
  • Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: pathological functions and therapeutic opportunities. JHEP Rep. 2020;2(6):100165. doi:10.1016/j.jhepr.2020.100165
  • Giannone G, Ghisoni E, Genta S, et al. Immuno-Metabolism and Microenvironment in Cancer: key Players for Immunotherapy. Int J Mol Sci. 2020;21(12):4414. doi:10.3390/ijms21124414
  • Hung MH, Lee JS, Ma C, et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat Commun. 2021;12(1):1455. doi:10.1038/s41467-021-21804-1
  • Wiltberger G, Wu Y, Lange U, et al. Protective effects of coffee consumption following liver transplantation for hepatocellular carcinoma in cirrhosis. Aliment Pharmacol Ther. 2019;49(6):779–788. doi:10.1111/apt.15089
  • Hhm N, Lee RY, Goh S, et al. Immunohistochemical scoring of CD38 in the tumor microenvironment predicts responsiveness to anti-PD-1/PD-L1 immunotherapy in hepatocellular carcinoma. J Immunother Cancer. 2020;8(2):e000987. doi:10.1136/jitc-2020-000987
  • Ma XL, Shen MN, Hu B, et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. J Hematol Oncol. 2019;12(1):37. doi:10.1186/s13045-019-0724-7
  • Lu JC, Zhang PF, Huang XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol. 2021;14(1):200. doi:10.1186/s13045-021-01207-x
  • Jindal A, Thadi A. Hepatocellular Carcinoma: etiology and Current and Future Drugs. J Clin Exp Hepatol. 2019;9(2):221–232. doi:10.1016/j.jceh.2019.01.004
  • Pang L, Ng KT, Liu J, et al. Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Lett. 2021;522:80–92. doi:10.1016/j.canlet.2021.09.022
  • Hu S, Liu K, Luo H, et al. Caffeine programs hepatic SIRT1-related cholesterol synthesis and hypercholesterolemia via A2AR/cAMP/PKA pathway in adult male offspring rats. Toxicology. 2019;418:11–21. doi:10.1016/j.tox.2019.02.015
  • Salem R, Tselikas L, De Baere T. Interventional treatment of hepatocellular carcinoma. J Hepatol. 2022;77(4):1205–1206. doi:10.1016/j.jhep.2022.03.037
  • Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2022;19(10):670–681. doi:10.1038/s41575-022-00620-y
  • Rawat D, Shrivastava S, Naik RA, Chhonker SK, Mehrotra A, Koiri RK. An Overview of Natural Plant Products in the Treatment of Hepatocellular Carcinoma. Anticancer Agents Med Chem. 2018;18(13):1838–1859. doi:10.2174/1871520618666180604085612
  • Yau T, Park JW, Finn RS, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, Phase 3 trial. Lancet Oncol. 2022;23(1):77–90. doi:10.1016/S1470-2045(21)00604-5
  • Gregg JR, Kim J, Logothetis C, et al. Coffee Intake, Caffeine Metabolism Genotype, and Survival Among Men with Prostate Cancer. Eur Urol Oncol. 2023;6(3):282–288. doi:10.1016/j.euo.2022.07.008
  • Ellingjord-Dale M, Papadimitriou N, Katsoulis M, et al. Coffee consumption and risk of breast cancer: a Mendelian randomization study. PLoS One. 2021;16(1):e0236904. doi:10.1371/journal.pone.0236904
  • Li X, Yu C, Guo Y, et al.; China Kadoorie Biobank Collaborative Group. Association between tea consumption and risk of cancer: a prospective cohort study of 0.5 million Chinese adults. Eur J Epidemiol. 2019;34(8):753–763. doi:10.1007/s10654-019-00530-5
  • Wang J, Wang Y, Chu Y, et al. Tumor-derived adenosine promotes macrophage proliferation in human hepatocellular carcinoma. J Hepatol. 2021;74(3):627–637. doi:10.1016/j.jhep.2020.10.021
  • Lange NF, Radu P, Dufour JF. Prevention of NAFLD-associated HCC: role of lifestyle and chemoprevention. J Hepatol. 2021;75(5):1217–1227. doi:10.1016/j.jhep.2021.07.025
  • Song H, Shen X, Chu Q, Zheng X. Coffee consumption is not associated with the risk of gastric cancer: an updated systematic review and meta-analysis of prospective cohort studies. Nutr Res. 2022;102:35–44. doi:10.1016/j.nutres.2022.03.002
  • Van Dam RM, Hu FB, Willett WC. Coffee, Caffeine, and Health. N Engl J Med. 2020;383(4):369–378. doi:10.1056/NEJMra1816604
  • Yu J, Liang D, Li J, et al. Coffee, Green Tea Intake, and the Risk of Hepatocellular Carcinoma: a Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer. 2023;75(5):1295–1308. doi:10.1080/01635581.2023.2178949
  • Kawano Y, Nagata M, Kohno T, et al. Caffeine increases the antitumor effect of Cisplatin in human hepatocellular carcinoma cells. Biol Pharm Bull. 2012;35(3):400–407. doi:10.1248/bpb.35.400
  • Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34(4):495–504. doi:10.1111/liv.12304
  • Dong S, Kong J, Kong J, et al. Low Concentration of Caffeine Inhibits the Progression of the Hepatocellular Carcinoma via Akt Signaling Pathway. Anticancer Agents Med Chem. 2015;15(4):484–492. doi:10.2174/1871520615666150209110832
  • Oda Y, Hidaka M, Suzuki A. Caffeine Has a Synergistic Anticancer Effect with Cisplatin via Inhibiting Fanconi Anemia Group D2 Protein Monoubiquitination in Hepatocellular Carcinoma Cells. Biol Pharm Bull. 2017;40(11):2005–2009. doi:10.1248/bpb.b17-00457
  • Edling CE, Selvaggi F, Ghonaim R, Maffucci T, Falasca M. Caffeine and the analog CGS 15943 inhibit cancer cell growth by targeting the phosphoinositide 3-kinase/Akt pathway. Cancer Biol Ther. 2014;15(5):524–532. doi:10.4161/cbt.28018
  • Okano J, Nagahara T, Matsumoto K, Murawaki Y. Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin Pharmacol Toxicol. 2008;102(6):543–551. doi:10.1111/j.1742-7843.2008.00231.x
  • Yin X, He X, Wu L, Yan D, Yan S. Chlorogenic Acid, the Main Antioxidant in Coffee, Reduces Radiation-Induced Apoptosis and DNA Damage via NF-E2-Related Factor 2 (Nrf2) Activation in Hepatocellular Carcinoma. Oxid Med Cell Longev. 2022;2022:4566949. doi:10.1155/2022/4566949
  • Seo HY, Lee SH, Lee JH, Lee JH, Jang BK, Kim MK. Kahweol Induces Apoptosis in Hepatocellular Carcinoma Cells by Inhibiting the Src/mTOR/STAT3 Signaling Pathway. Int J Mol Sci. 2021;22(19):10509. doi:10.3390/ijms221910509
  • Fagundes TR, Madeira TB, Melo GP, et al. Caffeine improves the cytotoxic effect of dacarbazine on B16F10 murine melanoma cells. Bioorg Chem. 2022;120:105576. doi:10.1016/j.bioorg.2021.105576
  • Özgün G S, Özgün E, Tabakçıoğlu K, Süer Gökmen S, Eskiocak S, Çakır E. Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells. Balkan Med J. 2017;34(6):534–539. doi:10.4274/balkanmedj.2016.1217
  • Lemos MF, Salustriano NA, Costa MMS, et al. Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. J Saudi Chem Soc. 2022:101467. doi:10.1016/j.jscs.2022.101467
  • Briansó-Llort L, Fuertes-Rioja L, Ramos-Perez L, Hernandez C, Simó R, Selva DM. Caffeine Upregulates Hepatic Sex Hormone-Binding Globulin Production by Increasing Adiponectin Through AKT/FOXO1 Pathway in White Adipose Tissue. Mol Nutr Food Res. 2020;64(17):e1901253. doi:10.1002/mnfr.201901253
  • Kisku T, Paul K, Singh B, et al. Synthesis of Cu(II)-Caffeine Complex as potential therapeutic Agent: studies on Antioxidant, anticancer and pharmacological activities. J Mol Liq. 2022;364:119897. doi:10.1016/j.molliq.2022.119897
  • Sherman MM, Tarantino PM, Morrison DN, Lin CH, Parente RM, Sippy BC. A double-blind, randomized, two-part, two-period crossover study to evaluate the pharmacokinetics of caffeine versus d9-caffeine in healthy subjects. Regul Toxicol Pharmacol. 2022;133:105194. doi:10.1016/j.yrtph.2022.105194
  • Yang H, Li J, Cui L, et al. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2. Spectrochim, Acta A Mol, Biomol, Spectrosc. 2018;193:169–174. doi:10.1016/j.saa.2017.12.020
  • Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep. 2021;3(5):100324. doi:10.1016/j.jhepr.2021.100324
  • Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–2270. doi:10.1002/hep.29683
  • Fang G, Zhang P, Liu J, et al. Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling. Cancer Lett. 2019;463:11–26. doi:10.1016/j.canlet.2019.08.003
  • Kim GW, Imam H, Khan M, et al. HBV-Induced Increased N6 Methyladenosine Modification of PTEN RNA Affects Innate Immunity and Contributes to HCC. Hepatology. 2021;73(2):533–547. doi:10.1002/hep.31313
  • Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021;599(1):23–37. doi:10.1113/JP280572
  • Piñeiro Fernández J, Luddy KA, Harmon C, O’Farrelly C. Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function. Int J Mol Sci. 2019;20(17):4131. doi:10.3390/ijms20174131
  • Chiu DK, Tse AP, Xu IM, et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 2017;8(1):517. doi:10.1038/s41467-017-00530-7
  • Romualdo GR, Prata GB, da Silva TC, et al. The combination of coffee compounds attenuates early fibrosis-associated hepatocarcinogenesis in mice: involvement of miRNA profile modulation. J Nutr Biochem. 2020;85:108479. doi:10.1016/j.jnutbio.2020.108479
  • Amer MG, Mazen NF, Mohamed AM. Caffeine intake decreases oxidative stress and inflammatory biomarkers in experimental liver diseases induced by thioacetamide: biochemical and histological study. Int J Immunopathol Pharmacol. 2017;30(1):13–24. doi:10.1177/0394632017694898
  • Yang Y, Hou N, Wang X, et al. miR-15b-5p induces endoplasmic reticulum stress and apoptosis in human hepatocellular carcinoma, both in vitro and in vivo, by suppressing Rab1A. Oncotarget. 2015;6(18):16227–16238. doi:10.18632/oncotarget.3970
  • Fujise Y, Okano J, Nagahara T, Abe R, Imamoto R, Murawaki Y. Preventive effect of caffeine and curcumin on hepato-carcinogenesis in diethylnitrosamine-induced rats. Int J Oncol. 2012;40(6):1779–1788. doi:10.3892/ijo.2012.1343
  • Mansour A, Mohajeri-Tehrani MR, Samadi M, et al. Effects of supplementation with main coffee components including caffeine and/or chlorogenic acid on hepatic, metabolic, and inflammatory indices in patients with non-alcoholic fatty liver disease and type 2 diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Nutr J. 2021;20(1):35. doi:10.1186/s12937-021-00694-5
  • Dorvigny BM, Tavares LS, de Almeida IA, et al. Antiinflammatory and antiinfective effect of caffeine in a mouse model of disseminated salmonellosis. Phytother Res. 2022;36(4):1652–1663. doi:10.1002/ptr.7349
  • Zhang WZ, Sun NN, Hu Y, Cao Y, Amber S. Caffeine Exposure Causes Immune Dysfunction and Intrauterine Growth Restriction Retardation in Rats. Biomed Environ Sci. 2022;35(2):170–173. doi:10.3967/bes2022.025
  • Cachón AU, Quintal-Novelo C, Medina-Escobedo G, Castro-Aguilar G, Moo-Puc RE. Hepatoprotective Effect of Low Doses of Caffeine on CCl4-Induced Liver Damage in Rats. J Diet Suppl. 2017;14(2):158–172. doi:10.1080/19390211.2016.1207003
  • Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Sig. 2019;15(4):477–489. doi:10.1007/s11302-019-09680-3
  • Zheng J, Zhao L, Dong J, et al. The role of dietary factors in nonalcoholic fatty liver disease to hepatocellular carcinoma progression: a systematic review. Clin Nutr. 2022;41(10):2295–2307. doi:10.1016/j.clnu.2022.08.018
  • Deng Y, Huang J, Wong MCS. Associations between six dietary habits and risk of hepatocellular carcinoma: a Mendelian randomization study. Hepatol Commun. 2022;6(8):2147–2154. doi:10.1002/hep4.1960
  • Carrieri P, Carrat F, Di Beo V, et al. Severe liver fibrosis in the HCV cure era: major effects of social vulnerability, diabetes, and unhealthy behaviors. JHEP Rep. 2022;4(6):100481. doi:10.1016/j.jhepr.2022.100481
  • Ruiz-Margáin A, Román-Calleja BM, Moreno-Guillén P, et al. Nutritional therapy for hepatocellular carcinoma. World J Gastrointest Oncol. 2021;13(10):1440–1452. doi:10.4251/wjgo.v13.i10.1440
  • Bai K, Cai Q, Jiang Y, Lv L. Coffee consumption and risk of hepatocellular carcinoma: a meta-analysis of eleven epidemiological studies. Onco Targets Ther. 2016;9:4369–4375. doi:10.2147/OTT.S109656
  • Petrick JL, Freedman ND, Graubard BI, et al. Coffee Consumption and Risk of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma by Sex: the Liver Cancer Pooling Project. Cancer Epidemiol Biomarkers Prev. 2015;24(9):1398–1406. doi:10.1158/1055-9965
  • Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C. Coffee reduces risk for hepatocellular carcinoma: an updated meta-analysis. Clin Gastroenterol Hepatol. 2013;11(11):1413–21.e1. doi:10.1016/j.cgh.2013.04.039
  • Bamia C, Lagiou P, Jenab M, et al. Coffee, tea and decaffeinated coffee in relation to hepatocellular carcinoma in a European population: multicentre, prospective cohort study. Int, J, Cancer. 2015;136(8):1899–1908. doi:10.1002/ijc.29214
  • Johnson S, Koh WP, Wang R, Govindarajan S, Yu MC, Yuan JM. Coffee consumption and reduced risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Cancer Causes Control. 2011;22(3):503–510. doi:10.1007/s10552-010-9725-0
  • Leung WW, Ho SC, Chan HL, Wong V, Yeo W, Mok TS. Moderate coffee consumption reduces the risk of hepatocellular carcinoma in hepatitis B chronic carriers: a case-control study. J Epidemiol Community Health. 2011;65(6):556–558. doi:10.1136/jech.2009.104125
  • Mirzaei S, Gholami MH, Zabolian A, et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: new hope in the fight against cancer. Pharmacol Res. 2021;171:105759. doi:10.1016/j.phrs.2021.105759
  • Leão TK, Ribeiro DL, Machado ART, Costa TR, Sampaio SV, Antunes LMG. Synephrine and caffeine combination promotes cytotoxicity, DNA damage and transcriptional modulation of apoptosis-related genes in human HepG2 cells. Mutat Res Genet Toxicol Environ Mutagen. 2021;868-9:503375. doi:10.1016/j.mrgentox.2021.503375
  • Grundy A, Sandhu S, Arseneau J, et al. Lifetime caffeine intake and the risk of epithelial ovarian cancer. Cancer Epidemiol. 2022;76:102058. doi:10.1016/j.canep.2021.102058
  • Di Maso M, Boffetta P, Negri E, La Vecchia C, Bravi F. Caffeinated Coffee Consumption and Health Outcomes in the US Population: a Dose-Response Meta-Analysis and Estimation of Disease Cases and Deaths Avoided. Adv Nutr. 2021;12(4):1160–1176. doi:10.1093/advances/nmaa177
  • Parente RM, Tarantino PM, Sippy BC, Burdock GA. Pharmacokinetic, pharmacological, and genotoxic evaluation of deuterated caffeine. Food Chem Toxicol. 2022;160:112774. doi:10.1016/j.fct.2021.112774
  • De Sanctis V, Soliman N, Soliman AT, et al. Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: a significant public health hazard. Acta Biomed. 2017;88(2):222–231. doi:10.23750/abm.v88i2.6664
  • Kobashi D, Kamijo Y, Hanazawa T, Yoshizawa T, Nakamura M. Severe caffeine poisoning successfully treated with high flow continuous hemodialysis. Am J Emerg Med. 2022;58:351.e3–351.e5. doi:10.1016/j.ajem.2022.05.019
  • Ou HC, Deng JF, Yang CC, et al. A successful experience using labetalol and hemodialysis to treat near-fatal caffeine poisoning: a case report with toxicodynamics. Am J Emerg Med. 2022;55:224.e1–224.e4. doi:10.1016/j.ajem.2021.11.049