177
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

An Overview of the Mechanisms Involved in Neuralgia

, , , &
Pages 4087-4101 | Received 14 Jun 2023, Accepted 26 Aug 2023, Published online: 18 Sep 2023

References

  • Raja SN, Carr DB, Cohen M, et al. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161(9):1976–1982. doi:10.1097/j.pain.0000000000001939
  • Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18(1):20–30. doi:10.1038/nrn.2016.162
  • Peirs C, Seal RP. Neural circuits for pain: recent advances and current views. Science. 2016;354(6312):578–584. doi:10.1126/science.aaf8933
  • Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082–2097. doi:10.1016/S0140-6736(21)00393-7
  • Scholz J, Finnerup NB, Attal N, et al. Classification committee of the neuropathic pain special interest G. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain. 2019;160:53–59. doi:10.1097/j.pain.0000000000001365
  • Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101(1):259–301. doi:10.1152/physrev.00045.2019
  • Xie RG, Gao YJ, Park CK, et al. Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull. 2018;34(1):13–21. doi:10.1007/s12264-017-0106-5
  • Atta AA, Ibrahim WW, Mohamed AF, Abdelkader NF. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacology. 2023;31(3):1053–1067. doi:10.1007/s10787-023-01216-x
  • Sun JL, Dai WJ, Shen XY, Lü N, Zhang YQ. Interleukin-17 is involved in neuropathic pain and spinal synapse plasticity on mice. J Neuroimmunol. 2023;377:578068. doi:10.1016/j.jneuroim.2023.578068
  • Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep. 2018;70(4):821–830. doi:10.1016/j.pharep.2018.01.006
  • Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 2017;158:543–559. doi:10.1097/j.pain.0000000000000831
  • Zhao Z, Zhang Z, Li J, et al. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. Elife. 2020;9:e61965. doi:10.7554/eLife.61965
  • Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Antagonism of CGRP receptor: central and peripheral mechanisms and mediators in an animal model of chronic migraine. Cells. 2022;11(19):3092. doi:10.3390/cells11193092
  • Yang G, Tan Q, Li Z, et al. The AMPK pathway triggers autophagy during CSF1-induced microglial activation and may be implicated in inducing neuropathic pain. J Neuroimmunol. 2020;345:577261. doi:10.1016/j.jneuroim.2020.577261
  • Kuhn JA, Vainchtein ID, Braz J, et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. Elife. 2021;10:e69056. doi:10.7554/eLife.69056
  • Cao YQ, Mantyh PW, Carlson EJ, Gillespie AM, Epstein CJ, Basbaum AI. Primary afferent tachykinins are required to experience moderate to intense pain. Nature. 1998;392(6674):390–394. doi:10.1038/32897
  • Zieglgänsberger W. Substance P and pain chronicity. Cell Tissue Res. 2019;375(1):227–241. doi:10.1007/s00441-018-2922-y
  • Ebrahimi S, Erfani B, Alalikhan A, et al. The in vitro pro-inflammatory functions of the SP/NK1R System in prostate cancer: a focus on nuclear factor-kappa B (NF-κB) and its pro-inflammatory target genes. Biochem Biotechnol. 2023:1. doi:10.1007/s12010-023-04495-w
  • Franchini L, Carrano N, Di Luca M, Gardoni F. Synaptic GluN2A-Containing NMDA receptors: from physiology to pathological synaptic plasticity. Int J Mol Sci. 2020;21(4):1538. doi:10.3390/ijms21041538
  • Zhang YY, Liu F, Fang ZH, et al. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav Immun. 2022;106:129–146. doi:10.1016/j.bbi.2022.08.010
  • Zhang YY, Liu F, Lin J, et al. Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull. 2022;185:174–192. doi:10.1016/j.brainresbull.2022.05.003
  • Zhang H, Ma S-B, Gao Y-J, et al. Spinal CCL2 promotes pain sensitization by rapid enhancement of NMDA-induced currents through the ERK-GluN2B pathway in mouse lamina II neurons. Neurosci Bull. 2020;36(11):1344–1354 doi:10.1007/s12264-020-00557-9.
  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–284. doi:10.1016/j.cell.2009.09.028
  • Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16:1248–1257. doi:10.1038/nm.2235
  • Liu JA, Yu J, Cheung CW. Immune actions on the peripheral nervous system in pain. Int J Mol Sci. 2021;22(3). doi:10.3390/ijms22031448
  • Zhou L, Ao L, Yan Y, et al. The therapeutic potential of chemokines in the treatment of chemotherapy- induced peripheral neuropathy. Curr Drug Targets. 2020;21(3):288–301. doi:10.2174/1389450120666190906153652
  • Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther. 2022;231:107989. doi:10.1016/j.pharmthera.2021.107989
  • Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci. 2017;74(18):3275–3291. doi:10.1007/s00018-017-2513-1
  • Yang F, Jing JJ, Fu SY, et al. Spinal MCP-1 contributes to central post-stroke pain by inducing central sensitization in rats. Mol Neurobiol. 2023;60(4):2086–2098. doi:10.1007/s12035-022-03184-9
  • Gao YJ, Zhang L, Samad OA, et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci. 2009;29(13):4096–4108. doi:10.1523/JNEUROSCI.3623-08.2009
  • Yan Y, Liang Y, Ding T, Chu H. PI3K/Akt signaling pathway may be involved in MCP-1-induced P2X4R expression in cultured microglia and cancer-induced bone pain rats. Neurosci Lett. 2019;701:100–105. doi:10.1016/j.neulet.2019.02.024
  • Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain. 2022;163(1):e106–e120. doi:10.1097/j.pain.0000000000002321
  • Jiang S, Liang J, Li W, et al. The role of CXCL1/CXCR2 axis in neurological diseases. Int Immunopharmacol. 2023;120:110330. doi:10.1016/j.intimp.2023.110330
  • Zhang ZJ, Cao DL, Zhang X, Ji RR, Gao YJ. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain. 2013;154(10):2185–2197. doi:10.1016/j.pain.2013.07.002
  • Cao DL, Zhang ZJ, Xie RG, Jiang BC, Ji RR, Gao YJ. Chemokine CXCL1 enhances inflammatory pain and increases NMDA receptor activity and COX-2 expression in spinal cord neurons via activation of CXCR2. Exp Neurol. 2014;261:328–336. doi:10.1016/j.expneurol.2014.05.014
  • Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM, HeldFeindt J. Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine. 2011;14:583–597. doi:10.3171/2010.12.SPINE10480
  • Song ZH, Song XJ, Yang CL, et al. Up-regulation of microglial chemokine CXCL12 in anterior cingulate cortex mediates neuropathic pain in diabetic mice. Acta Pharmacol Sin. 2023;44(7):1337–1349. doi:10.1038/s41401-022-01046-7
  • Liu ZY, Song ZW, Guo SW, et al. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther. 2019;25(9):922–936. doi:10.1111/cns.13128
  • Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol. 2008;84:116–131. doi:10.1016/j.pneurobio.2007.11.003
  • Xing F, Kong C, Bai L, et al. CXCL12/CXCR4 signaling mediated ERK1/2 activation in spinal cord contributes to the pathogenesis of postsurgical pain in rats. Mol Pain. 2017;13:1744806917718753. doi:10.1177/1744806917718753
  • Mines MA, Goodwin JS, Limbird LE, Cui FF, Fan GH. Deubiquitination of CXCR4 by USP14 is critical for both CXCL12-induced CXCR4 degradation and chemotaxis but not ERK ativation. J Biol Chem. 2009;284:5742–5752. doi:10.1074/jbc.M808507200
  • Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol. 2012;12(1):55–61. doi:10.1016/j.coph.2011.10.007
  • Rojewska E, Zychowska M, Piotrowska A, Kreiner G, Nalepa I, Mika J. Involvement of macrophage inflammatory protein-1 family members in the development of diabetic neuropathy and their contribution to effectiveness of morphine. Front Immunol. 2018;9:494. doi:10.3389/fimmu.2018.00494
  • Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Inoue K. Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem. 2009;108:115–125. doi:10.1111/j.1471-4159.2008.05744.x
  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol. 1998;84:238–249. doi:10.1016/S0165-5728(97)00208-7
  • Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–314. doi:10.1038/35018581
  • Wang J, Yin C, Pan Y, et al. CXCL13 contributes to chronic pain of a mouse model of CRPS-I via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn. J Neuroinflammation. 2023;20(1):109. doi:10.1186/s12974-023-02778-x
  • Wu XB, Cao DL, Zhang X, et al. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain. Sci Rep. 2016;6:34836. doi:10.1038/srep34836
  • Tsymbalyuk O, Gerzanich V, Mumtaz A, et al. SUR1, newly expressed in astrocytes, mediates neuropathic pain in a mouse model of peripheral nerve injury. Mol Pain. 2021;17:17448069211006603. doi:10.1177/17448069211006603
  • Jin SX, Zhuang ZY, Woolf CJ, et al. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23(10):4017–4022. doi:10.1523/JNEUROSCI.23-10-04017.2003
  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature. 2003;424(6950):778–783. doi:10.1038/nature01786
  • Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–845. doi:10.1126/science.1194637
  • Wang Y, Szretter KJ, Vermi W, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13(8):753–760. doi:10.1038/ni.2360
  • Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–143. doi:10.1038/nn.3599
  • Chen X, Yao J, Lai J, et al. ADAM17 aggravates the inflammatory response by modulating microglia polarization through the TGF-β1/smad pathway following experimental traumatic brain injury. J Neurotrauma. 2023;40(13–14):1495–1509. doi:10.1089/neu.2022.0373
  • Xie Y, Chen X, Li Y, et al. Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways. J Neuroinflammation. 2022;19(1):194. doi:10.1186/s12974-022-02557-0
  • Priyanto B, Islam AA, Hatta M, Bukhari A, Rosyidi RM. Effect of MLC901 on MIR30C-5P expression, TGF-Β expression, VEGF receptor expression, degree of axon demyelination and changes in neuropathic pain behaviour in experimental animals experiencing neuropathic pain with circumferential spinal stenosis method. Ann Med Surg. 2022;81:104489. doi:10.1016/j.amsu.2022.104489
  • Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, et al. Microglia: agents of the CNS pro-inflammatory response. Cells. 2020;9(7):1717. doi:10.3390/cells9071717
  • Masuda T, Tsuda M, Yoshinaga R, et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep. 2012;1(4):334–340. doi:10.1016/j.celrep.2012.02.014
  • Matsushita T, Otani K, Oto Y, et al. Sustained microglial activation in the area postrema of collagen-induced arthritis mice. Arthritis Res Ther. 2021;23(1):273. doi:10.1186/s13075-021-02657-x
  • Li HN, Yang QQ, Wang WT, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18(1):150. doi:10.1186/s12974-021-02198-9
  • Liu Y, Zhou LJ, Wang J, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37(4):871–881. doi:10.1523/JNEUROSCI.2235-16.2016
  • Miyamoto K, Kume K, Ohsawa M. Role of microglia in mechanical allodynia in the anterior cingulate cortex. J Pharmacol Sci. 2017;134(3):158–165. doi:10.1016/j.jphs.2017.05.010
  • Ni HD, Yao M, Huang B, et al. Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res. 2016;94(1):50–61. doi:10.1002/jnr.23672
  • Taylor AM, Mehrabani S, Liu S, et al. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J Neurosci Res. 2017;95(6):1330–1335. doi:10.1002/jnr.23883
  • Goins AE, Gomez K, Ran D, et al. Neuronal allodynic mechanisms of Slc7a5 (LAT1) in the spared nerve injury rodent model of neuropathic pain. Pflugers Arch. 2022;474(4):397–403. doi:10.1007/s00424-021-02653-9
  • Tilley DM, Cedeño DL, Vetri F, et al. Differential target multiplexed spinal cord stimulation programming modulates proteins involved in ion regulation in an animal model of neuropathic pain. Mol Pain. 2022;18:17448069211060181. doi:10.1177/17448069211060181
  • Zhang J, Rong L, Shao J, et al. Epigenetic restoration of voltage-gated potassium channel Kv1.2 alleviates nerve injury-induced neuropathic pain. J Neurochem. 2021;156(3):367–378. doi:10.1111/jnc.15117
  • Zhang Z, Zheng B, Du S, et al. Eukaryotic initiation factor 4 gamma 2 contributes to neuropathic pain through down-regulation of Kv1.2 and the mu opioid receptor in mouse primary sensory neurones. Br J Anaesth. 2021;126(3):706–719. doi:10.1016/j.bja.2020.10.032
  • Kim SS, Park J, Kim E, Hwang EM, Park JY. β-COP suppresses the surface expression of the TREK2. Cells. 2023;12(11):1500. doi:10.3390/cells12111500
  • Mao Q, Wu S, Gu X, et al. DNMT3a-triggered downregulation of K 2p 1.1 gene in primary sensory neurons contributes to paclitaxel-induced neuropathic pain. Int J Cancer. 2019;145:2122–2134. doi:10.1002/ijc.32155
  • Jia S, Wei G, Bono J, et al. TET1 overexpression attenuates paclitaxel-induced neuropathic pain through rescuing K(2p)1.1 expression in primary sensory neurons of male rats. Life Sci. 2022;297:120486. doi:10.1016/j.lfs.2022.120486
  • Zhang D, Zhao W, Liu J, et al. Sodium leak channel contributes to neuronal sensitization in neuropathic pain. Prog Neurobiol. 2021;202:102041. doi:10.1016/j.pneurobio.2021.102041
  • Bennett DL, Clark AJ, Huang J, et al. The role of voltage-gated sodium channels in pain signaling. Physiol Rev. 2019;99(2):1079–1151. doi:10.1152/physrev.00052.2017
  • Lu W, Cheng X, Chen J, et al. A buthus martensii Karsch scorpion sting targets Nav1.7 in mice and mimics a phenotype of human chronic pain. Pain. 2022;163(2):e202–e214. doi:10.1097/j.pain.0000000000002397
  • Zhang Y, Wang L, Peng D, et al. Engineering of highly potent and selective HNTX-III mutant against hNa(v)1.7 sodium channel for treatment of pain. J Biol Chem. 2021;296:100326. doi:10.1016/j.jbc.2021.100326
  • Zeisel A, Hochgerner H, Lönnerberg P, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999–1014.e1022. doi:10.1016/j.cell.2018.06.021
  • Hidaka K, Maruta T, Koshida T, et al. Extracellular signal-regulated kinase phosphorylation enhancement and Na(V)1.7 sodium channel upregulation in rat dorsal root ganglia neurons contribute to resiniferatoxin-induced neuropathic pain: the efficacy and mechanism of pulsed radiofrequency therapy. Mol Pain. 2022;18:17448069221089784. doi:10.1177/17448069221089784
  • Li J, Stratton HJ, Lorca SA, et al. Small molecule targeting NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in chronic constriction injury (CCI) rats. Channels. 2022;16(1):1–8. doi:10.1080/19336950.2021.2023383
  • Schmidtko A, Lötsch J, Freynhagen R, et al. Ziconotide for treatment of severe chronic pain. Lancet. 2010;375(9725):1569–1577. doi:10.1016/S0140-6736(10)60354-6
  • George DS, Hackelberg S, Jayaraj ND, et al. Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain. 2022;163(3):560–578. doi:10.1097/j.pain.0000000000002391
  • Rios L, Pokhrel S, Li SJ, Heo G, Haileselassie B, Mochly-Rosen D. Targeting an allosteric site in dynamin-related protein 1 to inhibit Fis1-mediated mitochondrial dysfunction. Nat Commun. 2023;14(1):4356. doi:10.1038/s41467-023-40043-0
  • Liu X, Rothe K, Yen R, et al. A novel AHI-1-BCR-ABL-DNM2 complex regulates leukemic properties of primitive CML cells through enhanced cellular endocytosis and ROS-mediated autophagy. Leukemia. 2017;31(11):2376–2387. doi:10.1038/leu.2017.108
  • Gu C, Yao J, Sun P. Dynamin 3 suppresses growth and induces apoptosis of hepatocellular carcinoma cells by activating inducible nitric oxide synthase production. Oncol Lett. 2017;13(6):4776–4784. doi:10.3892/ol.2017.6057
  • Cai Z, Quan L, Chang X, et al. High-voltage long-duration pulsed radiofrequency attenuates neuropathic pain in CCI rats by inhibiting Cav2.2 in spinal dorsal horn and dorsal root ganglion. Brain Res. 2022;1785:147892. doi:10.1016/j.brainres.2022.147892
  • Zhang Y, Qian Z, Jiang D, et al. Neuromedin B receptor stimulation of Cav3.2 T-type Ca(2+) channels in primary sensory neurons mediates peripheral pain hypersensitivity. Theranostics. 2021;11(19):9342–9357. doi:10.7150/thno.62255
  • Qi R, Cao J, Sun Y, et al. Histone methylation-mediated microRNA-32-5p down-regulation in sensory neurons regulates pain behaviors via targeting Cav3.2 channels. Proc Natl Acad Sci USA. 2022;119(14):e2117209119. doi:10.1073/pnas.2117209119
  • Wang Y, Hu X, Huang H, et al. Optimization of 4-arylthiophene-3-carboxylic acid derivatives as inhibitors of ANO1: lead optimization studies toward their analgesic efficacy for inflammatory pain. Eur J Med Chem. 2022;237:114413. doi:10.1016/j.ejmech.2022.114413
  • Yao L, Zhang TY, Diao XT, et al. Functional expression of glycine receptors in DRG neurons of mice. Eur J Pharmacol. 2021;899:174034. doi:10.1016/j.ejphar.2021.174034
  • Liao YH, Wang B, Chen MX, et al. LIFU alleviates neuropathic pain by improving the KCC(2) expression and inhibiting the CaMKIV-KCC(2) pathway in the L4-L5 section of the spinal cord. Neural Plast. 2021;2021:6659668. doi:10.1155/2021/6659668
  • Lorenzo LE, Godin AG, Ferrini F, et al. Enhancing neuronal chloride extrusion rescues α2/α3 GABA(A)-mediated analgesia in neuropathic pain. Nat Commun. 2020;11(1):869. doi:10.1038/s41467-019-14154-6
  • Li J, Price TJ, Baccei ML. D1/D5 dopamine receptors and mGluR5 jointly enable non-hebbian long-term potentiation at sensory synapses onto lamina I spinoparabrachial neurons. J Neurosci. 2022;42(3):350–361. doi:10.1523/JNEUROSCI.1793-21.2021
  • Liu Q, Ko CY, Zheng C, et al. Decreased glutamatergic synaptic strength in the periaqueductal gray contributes to maintenance of visceral pain in male rats with experimental pancreatitis. Neuroscience. 2020;428:60–69. doi:10.1016/j.neuroscience.2019.12.004
  • Dong L, Zhang Y, Chen J. 新型镇痛靶点α2δ-1-NMDAR稳定表达细胞株构建及镇痛药物筛选的应用 [A novel cell tool for α2δ-1-NMDAR target-based analgesic drug discovery]. Shengwu Gongcheng Xuebao. 2022;38(3):1149–1158. Chinese. doi:10.13345/j.cjb.210162
  • Xie RG, Chu WG, Liu DL, et al. Presynaptic NMDARs on spinal nociceptor terminals state-dependently modulate synaptic transmission and pain. Nat Commun. 2022;13(1):728. doi:10.1038/s41467-022-28429-y
  • Wu Q, Yue J, Lin L, et al. Electroacupuncture may alleviate neuropathic pain via suppressing P2X7R expression. Mol Pain. 2021;17:1744806921997654. doi:10.1177/1744806921997654
  • Li J, Wu Y, Chen P, et al. CXCL12 promotes spinal nerve regeneration and functional recovery after spinal cord injury. Neuroreport. 2021;32(6):450–457. doi:10.1097/WNR.0000000000001613
  • Luo L, Song S, Ezenwukwa CC, et al. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int. 2021;142:104925. doi:10.1016/j.neuint.2020.104925
  • Sun L, Tong CK, Morgenstern TJ, et al. Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain. Proc Natl Acad Sci USA. 2022;119(20):e2118129119. doi:10.1073/pnas.2118129119
  • Boinon L, Yu J, Madura CL, et al. Conditional knockout of CRMP2 in neurons, but not astrocytes, disrupts spinal nociceptive neurotransmission to control the initiation and maintenance of chronic neuropathic pain. Pain. 2022;163(2):e368–e381. doi:10.1097/j.pain.0000000000002344
  • Edwards RR, Dworkin RH, Sullivan MD, et al. The role of psychosocial processes in the development and maintenance of chronic pain. J Pain. 2016;17(9 Suppl):T70–92. doi:10.1016/j.jpain.2016.01.001
  • Ahn H, Weaver M, Lyon D, et al. Depression and pain in asian and white Americans with knee osteoarthritis. J Pain. 2017;18(10):1229–1236. doi:10.1016/j.jpain.2017.05.007
  • Gerrits M, van Oppen P, van Marwijk HWJ, et al. Pain and the onset of depressive and anxiety disorders. Pain. 2014;155(1):53–59. doi:10.1016/j.pain.2013.09.005
  • Becker S, Navratilova E, Nees F, et al. Shared mechanisms of chronic pain and emotional-motivational problems: from basic science to the clinics. Pain Res Manag. 2018;2018:9305026. doi:10.1155/2018/9305026
  • Wu XB, Zhu Q, Gao YJ. CCL2/CCR2 contributes to the altered excitatory-inhibitory synaptic balance in the nucleus accumbens shell following peripheral nerve injury-induced neuropathic pain. Neurosci Bull. 2021;37(7):921–933. doi:10.1007/s12264-021-00697-6
  • Haack M, Simpson N, Sethna N, et al. Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacology. 2020;45(1):205–216. doi:10.1038/s41386-019-0439-z
  • Li MT, Robinson CL, Ruan QZ, et al. The influence of sleep disturbance on chronic pain. Curr Pain Headache Rep. 2022;26(10):795–804. doi:10.1007/s11916-022-01074-2
  • Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch. 2020;472(7):831–844. doi:10.1007/s00424-020-02429-7
  • Blum ID, Keleş MF, Baz ES, et al. Astroglial calcium signaling encodes sleep need in drosophila. Curr Biol. 2021;31(1):150–162.e157. doi:10.1016/j.cub.2020.10.012
  • Brüning F, Noya SB, Bange T, et al. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science. 2019;366(6462). doi:10.1126/science.aav3617
  • Huang S, Sigrist SJ. Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Curr Opin Neurobiol. 2021;69:1–10. doi:10.1016/j.conb.2020.11.010
  • Jin GJ, Peng X, Chen ZG, et al. Celastrol attenuates chronic constrictive injury-induced neuropathic pain and inhibits the TLR4/NF-κB signaling pathway in the spinal cord. J Nat Med. 2022;76(1):268–275. doi:10.1007/s11418-021-01564-4
  • Cheng LZ, Zhou JM, Ma JL, et al. 延胡索乙素通过抑制p38 MAPK信号通路介导的小胶质细胞活化改善糖尿病大鼠神经病理性疼痛[Tetrahydropalmatine alleviated diabetic neuropathic pain by inhibiting activation of microglia via p38 MAPK signaling pathway]. Zhongguo Zhong yao za zhi. 2022;47(9):2533–2540. Chinese. doi:10.19540/j.cnki.cjcmm.20220119.702
  • Romeo-Guitart D, Casas C. NeuroHeal treatment alleviates neuropathic pain and enhances sensory axon regeneration. Cells. 2020;9(4):808. doi:10.3390/cells9040808
  • Liu Q, Li R, Yang W, et al. Role of neuroglia in neuropathic pain and depression. Pharmacol Res. 2021;174:105957. doi:10.1016/j.phrs.2021.105957
  • Petroianu GA, Aloum L, Adem A. Neuropathic pain: mechanisms and therapeutic strategies. Front Cell Dev Biol. 2023;11:1072629. doi:10.3389/fcell.2023.1072629