107
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Electroacupuncture Pretreatment Attenuates Learning Memory Impairment Induced by Repeated Propofol Exposure and Modulates Hippocampal Synaptic Plasticity in Rats

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 4559-4573 | Received 24 Jul 2023, Accepted 27 Sep 2023, Published online: 16 Oct 2023

References

  • Tesic V, Joksimovic SM, Quillinan N, et al. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABAA currents, but are not neurotoxic to the developing rat brain. Br J Anaesth. 2020;124(5):603–613. doi:10.1016/j.bja.2020.01.013
  • Yang Y, Yi J, Pan M, Hu B, Duan H. Edaravone alleviated propofol-induced neural injury in developing rats by BDNF/TrkB pathway. J Cell Mol Med. 2021;25(11):4974–4987. doi:10.1111/jcmm.16422
  • Zeng Z, Yao J, Zhong J, et al. The role of the lncRNA-LRCF in propofol-induced oligodendrocyte damage in neonatal mouse. Neurochem Res. 2021;46(4):778–791. doi:10.1007/s11064-020-03205-w
  • Zhou H, Xie Z, Brambrink AM, Yang G. Behavioural impairments after exposure of neonatal mice to propofol are accompanied by reductions in neuronal activity in cortical circuitry. Br J Anaesth. 2021;126(6):1141–1156. doi:10.1016/j.bja.2021.01.017
  • Shen X, Dong Y, Xu Z, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–515. doi:10.1097/ALN.0b013e3182834d77
  • Stratmann G, Sall JW, May LD, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology. 2009;110(4):834–848. doi:10.1097/ALN.0b013e31819c463d
  • Apai C, Shah R, Tran K, Pandya shah S. Anesthesia and the developing brain: a review of sevoflurane-induced neurotoxicity in pediatric populations. Clin Ther. 2021;43(4):762–778. doi:10.1016/j.clinthera.2021.01.024
  • Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–882. doi:10.1523/JNEUROSCI.23-03-00876.2003
  • Brambrink AM, Evers AS, Avidan MS, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116(2):372–384. doi:10.1097/ALN.0b013e318242b2cd
  • Klintsova AY, Hamilton GF, Boschen KE. Long-term consequences of developmental alcohol exposure on brain structure and function: therapeutic benefits of physical activity. Brain Sci. 2012;3(1):1–38. doi:10.3390/brainsci3010001
  • Liu F, Liu S, Patterson TA, et al. Protective effects of xenon on propofol-induced neurotoxicity in human neural stem cell-derived models. Mol Neurobiol. 2020;57(1):200–207. doi:10.1007/s12035-019-01769-5
  • Liu F, Rainosek SW, Sadovova N, et al. Protective effect of acetyl-L-carnitine on propofol-induced toxicity in embryonic neural stem cells. Neurotoxicology. 2014;42:49–57. doi:10.1016/j.neuro.2014.03.011
  • Liu F, Liu S, Patterson TA. Effects of xenon-based anesthetic exposure on the expression levels of Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) on human neural stem cell-derived neurons. Mol Neurobiol. 2020;57(1):217–225. doi:10.1007/s12035-019-01771-x
  • Torii T, Sato A, Nakahara Y, Iwahashi M, Itoh Y, Iramina K. Frequency-dependent effects of repetitive transcranial magnetic stimulation on the human brain. Neuroreport. 2012;23(18):1065–1070. doi:10.1097/WNR.0b013e32835afaf0
  • She YJ, Xu HP, Gao Y, Wang Q, Zheng J, Ruan X. Calpain-TRPC6 signaling pathway contributes to propofol-induced developmental neurotoxicity in rats. Neurotoxicology. 2023;95:56–65. doi:10.1016/j.neuro.2023.01.004
  • Engelhardt T, MacDonald J, Galley HF, Webster NR. Webster NR Selective phosphodiesterase 5 inhibition does not reduce propofol sedation requirements but affects speed of recovery and plasma cyclic guanosine 3’,5’-monophosphate concentrations in healthy volunteers. Anesth Analg. 2005;101(4):1050–1053. doi:10.1213/01.ane.0000168264.41341.7d
  • Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L. Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology. 2011;115(2):282–293. doi:10.1097/ALN.0b013e318221fbbd
  • Lee B, Ko MM, Lee SH, Chang GT. Acupuncture for the treatment of childhood anorexia: a systematic review and meta-analysis. Complement Ther Med. 2022;71(102893):102893. doi:10.1016/j.ctim.2022.102893
  • Cheuk DK, Wong V. Acupuncture for autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2011;9:CD007849.
  • Yang M, Gao S, Yao H. Effects of electroacupuncture on pediatric chronic urinary retention: a case-series study. Front Pediatr. 2023;11(1194651). doi:10.3389/fped.2023.1194651
  • Tang Y, Wang T, Yang L. Acupuncture for post-operative cognitive dysfunction: a systematic review and meta-analysis of randomized controlled trials. Acupunct Med. 2020;39(5):423–431. doi:10.1177/0964528420961393
  • Han YG, Qin X, Zhang T, et al. Electroacupuncture prevents cognitive impairment induced by lipopolysaccharide via inhibition of oxidative stress and neuroinflammation. Neurosci Lett. 2018;683:190–195. doi:10.1016/j.neulet.2018.06.003
  • Liu PR, Zhou Y, Zhang Y, Diao S. Electroacupuncture alleviates surgery-induced cognitive dysfunction by increasing α7-nAChR expression and inhibiting inflammatory pathway in aged rats. Neurosci Lett. 2017;659:1–6. doi:10.1016/j.neulet.2017.08.043
  • Chuang C-M, Hsieh C-L, Li T-C, Lin J-G. Acupuncture stimulation at Baihui acupoint reduced cerebral infarct and increased dopamine levels in chronic cerebral hypoperfusion and ischemia-reperfusion injured Sprague-Dawley rats. Am J Chin Med. 2007;35(5):779–791. doi:10.1142/S0192415X07005260
  • Chen A, Lin Z, Lan L, et al. Electroacupuncture at the Quchi and Zusanli acupoints exerts neuroprotective role in cerebral ischemia-reperfusion injured rats via activation of the PI3K/Akt pathway. Int J Mol Med. 2021;30(4):791–796.
  • Xue X, You Y, Tao J, et al. Electro-acupuncture at points of Zusanli and Quchi exerts anti-apoptotic effect through the modulation of PI3K/Akt signaling pathway. Neurosci Lett. 2014;558:14–19. doi:10.1016/j.neulet.2013.10.029
  • Li M, Li K, Ding N, Xie YQ, Niu K, Zhang H. Effect of electroacupuncture on expression of CREB and its ability to bind to synaptic proteins in amygdala and hippocampus of rats with post-traumatic stress disorder. Zhen Ci Yan Jiu. 2020;45(7):517–523. doi:10.13702/j.1000-0607.190709
  • Mertz C, Krarup S, Jensen CD, et al. Aspects of cAMP signaling in epileptogenesis and seizures and its potential as drug target. Neurochem Res. 2020;45(6):1247–1255. doi:10.1007/s11064-019-02853-x
  • Lee H, Son Y, Lee M. Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression. Neural Regen Res. 2019;14(9):1530–1535. doi:10.4103/1673-5374.255974
  • Sugiura S, Kitagawa K, Omura-Matsuoka E, et al. CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice. J Neurosci Res. 2004;75(3):401–407. doi:10.1002/jnr.10881
  • Gómez-Palacio-Schjetnan A, Escobar ML. Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci. 2013;15:117–136.
  • Gray JD, Milner TA, McEwen BS. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience. 2013;239:214–227. doi:10.1016/j.neuroscience.2012.08.034
  • El Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal Brain-Derived Neurotrophic Factor (BDNF). J Neurosci. 2019;39(13):2369–2382. doi:10.1523/JNEUROSCI.1661-18.2019
  • Wang HL, Liu FL, Li RQ, et al. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation. Neural Regen Res. 2021;16(6):1011–1016. doi:10.4103/1673-5374.300454
  • Xie L, Liu Y, Zhang N, et al. Electroacupuncture improves M2 microglia polarization and glia anti-inflammation of hippocampus in Alzheimer’s disease. Front Neurosci. 2021;15:689629.
  • Shao SM, Park KH, Yuan Y, et al. Electroacupuncture attenuates learning and memory impairment via PI3K/Akt pathway in an amyloid β25-35-induced Alzheimer’s disease mouse model. Evid Based Complement Alternat Med. 2022;2022:3849441. doi:10.1155/2022/3849441
  • Yu C-J, Wang M, Li R-Y. TREM2 and microglia contribute to the synaptic plasticity: from physiology to pathology. Mol Neurobiol. 2023;60(2):512–523. doi:10.1007/s12035-022-03100-1
  • Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry. 2023;2023:1–9.
  • Kim S, Kim MS, Park K, et al. Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res. 2016;40(1):55–61. doi:10.1016/j.jgr.2015.05.001
  • Zhang XQ, Mu JW, Wang HB, et al. Increased protein expression levels of pCREB, BDNF and SDF-1/CXCR4 in the hippocampus may be associated with enhanced neurogenesis induced by environmental enrichment. Mol Med Rep. 2016;14(3):2231–2237. doi:10.3892/mmr.2016.5470
  • Paramanik V, Thakur MK. Role of CREB signaling in aging brain. Arch Ital Biol. 2013;151(1):33–42. doi:10.4449/aib.v151i1.1461
  • Sánchez-Rodríguez I, Temprano-Carazo S, Jeremic D. Recognition memory induces natural LTP-like hippocampal synaptic excitation and inhibition. Int J Mol Sci. 2022;23(18):10806. doi:10.3390/ijms231810806
  • Nam SM, Choi JH, Yoo DY, et al. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J Med Food. 2014;17(6):641–649. doi:10.1089/jmf.2013.2965
  • Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem. 2008;89(3):293–311. doi:10.1016/j.nlm.2007.09.010