133
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma

, , , , , & ORCID Icon show all
Pages 4301-4315 | Received 04 Jul 2023, Accepted 16 Sep 2023, Published online: 27 Sep 2023

References

  • Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695–1709. doi:10.1016/S0140-6736(08)60728-X
  • Tang YC, Hsiao JR, Jiang SS, et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics. 2021;11(11):5232–5247. doi:10.7150/thno.53417
  • Yu MZ, Wu MM, Chien HT, et al. Risk prediction models for patients with head and neck cancer among the Taiwanese population. Cancers (Basel). 2022;14(21):5338. doi:10.3390/cancers14215338
  • Belcher R, Hayes K, Fedewa S, Chen AY. Current treatment of head and neck squamous cell cancer. J Surg Oncol. 2014;110(5):551–574. doi:10.1002/jso.23724
  • Kumar D, New J, Vishwakarma V, et al. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res. 2018;78(14):3769–3782. doi:10.1158/0008-5472.CAN-17-1076
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013
  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi:10.1016/j.immuni.2019.06.025
  • Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8–27. doi:10.1111/imr.12621
  • Paish HL, Kalson NS, Smith GR, et al. Fibroblasts promote inflammation and pain via IL-1alpha induction of the Monocyte Chemoattractant Chemokine (C-C Motif) ligand 2. Am J Pathol. 2018;188(3):696–714. doi:10.1016/j.ajpath.2017.11.007
  • Stevenson FT, Turck J, Locksley RM, Lovett DH. The N-terminal propiece of interleukin 1 alpha is a transforming nuclear oncoprotein. Proc Natl Acad Sci U S A. 1997;94(2):508–513. doi:10.1073/pnas.94.2.508
  • Leon X, Bothe C, Garcia J, et al. Expression of IL-1alpha correlates with distant metastasis in patients with head and neck squamous cell carcinoma. Oncotarget. 2015;6(35):37398–37409. doi:10.18632/oncotarget.6054
  • Li T, Cheng D, Guo J, et al. SOX9 and IL1A as the potential gene biomarkers of the oral cancer. Comb Chem High Throughput Screen. 2023;26(8):1461–1479. doi:10.2174/1386207325666220628091041
  • Lee CH, Chang JS, Syu SH, et al. IL-1beta promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol. 2015;230(4):875–884. doi:10.1002/jcp.24816
  • Chen LC, Wang LJ, Tsang NM, et al. Tumour inflammasome-derived IL-1beta recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Mol Med. 2012;4(12):1276–1293. doi:10.1002/emmm.201201569
  • Sun Y, Zhu D, Wang G, et al. Pro-inflammatory cytokine IL-1beta up-regulates CXC chemokine receptor 4 via Notch and ERK signaling pathways in tongue squamous cell carcinoma. PLoS One. 2015;10(7):e0132677. doi:10.1371/journal.pone.0132677
  • Singh P, Augustine D, Rao RS, et al. Interleukin-1beta and Caspase-3 expression serve as independent prognostic markers for metastasis and survival in oral squamous cell carcinoma. Cancer Biomark. 2019;26(1):109–122. doi:10.3233/CBM-190149
  • Ding Y, Yi J, Wang J, Sun Z. Interleukin-1 receptor antagonist: a promising cytokine against human squamous cell carcinomas. Heliyon. 2023;9(4):e14960. doi:10.1016/j.heliyon.2023.e14960
  • Li P, Yang Y, Yang X, et al. TNFR2 deficiency impairs the growth of mouse colon 553 cancer. Int J Biol Sci. 2023;19(4):1024–1035. doi:10.7150/ijbs.72606
  • Zhang C, Zhu M, Wang W, et al. TNF-alpha promotes tumor lymph angiogenesis in head and neck squamous cell carcinoma through regulation of ERK3. Transl Cancer Res. 2019;8(6):2439–2448. doi:10.21037/tcr.2019.09.60
  • Yoshimatsu Y, Wakabayashi I, Kimuro S, et al. TNF-alpha enhances TGF-beta-induced endothelial-to-mesenchymal transition via TGF-beta signal augmentation. Cancer Sci. 2020;111(7):2385–2399. doi:10.1111/cas.14455
  • Qiu YF, Wang MX, Meng LN, Zhang R, Wang W. MiR-21 regulates proliferation and apoptosis of oral cancer cells through TNF-alpha. Eur Rev Med Pharmacol Sci. 2018;22(22):7735–7741. doi:10.26355/eurrev_201811_16395
  • Sandra F, Matsuki NA, Takeuchi H, et al. TNF inhibited the apoptosis by activation of Akt serine/threonine kinase in the human head and neck squamous cell carcinoma. Cell Signal. 2002;14(9):771–778. doi:10.1016/S0898-6568(02)00025-6
  • Han N, Li X, Wang Y, et al. Increased tumor-infiltrating plasmacytoid dendritic cells promote cancer cell proliferation and invasion via TNF-alpha/NF-kappaB/CXCR-4 pathway in oral squamous cell carcinoma. J Cancer. 2021;12(10):3045–3056. doi:10.7150/jca.55580
  • Hohberger L, Wuertz BR, Xie H, Griffin T, Ondrey F. TNF-alpha drives matrix metalloproteinase-9 in squamous oral carcinogenesis. Laryngoscope. 2008;118(8):1395–1399. doi:10.1097/MLG.0b013e318174e09b
  • Ruokolainen H, Paakko P, Turpeenniemi-Hujanen T. Serum matrix metalloproteinase-9 in head and neck squamous cell carcinoma is a prognostic marker. Int J Cancer. 2005;116(3):422–427. doi:10.1002/ijc.21092
  • Li Y, He J, Wang F, et al. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol. 2020;18(1):181. doi:10.1186/s12957-020-01958-w
  • Wittekindt C, Jovanovic N, Guntinas-Lichius O. Expression of matrix metalloproteinase-9 (MMP-9) and blood vessel density in laryngeal squamous cell carcinomas. Acta Otolaryngol. 2011;131(1):101–106. doi:10.3109/00016489.2010.506886
  • Zhang L, Jiao M, Wu K, et al. TNF-alpha induced epithelial mesenchymal transition increases stemness properties in renal cell carcinoma cells. Int J Clin Exp Med. 2014;7(12):4951–4958.
  • Gomez KE, Wu F, Keysar SB, et al. Cancer cell CD44 mediates macrophage/monocyte- driven regulation of head and neck cancer stem cells. Cancer Res. 2020;80(19):4185–4198. doi:10.1158/0008-5472.CAN-20-1079
  • Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):64. doi:10.1186/s13045-018-0605-5
  • Andersson BA, Lewin F, Lundgren J, et al. Plasma tumor necrosis factor-alpha and C-reactive protein as biomarker for survival in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol. 2014;140(3):515–519. doi:10.1007/s00432-014-1592-8
  • Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi:10.1038/sigtrans.2017.23
  • Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death--a new approach to cancer therapy. J Clin Invest. 2005;115(10):2625–2632. doi:10.1172/JCI26322
  • Pacifico F, Leonardi A. Role of NF-kappaB in thyroid cancer. Mol Cell Endocrinol. 2010;321(1):29–35. doi:10.1016/j.mce.2009.10.010
  • Wang S, Liu Q, Zhang Y, et al. Suppression of growth, migration and invasion of highly- metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol Cancer. 2009;8:81. doi:10.1186/1476-4598-8-81
  • Ma T, Zhao Z, Wang Z, Wang C, Zhang L. MiR-940 inhibits migration and invasion of tongue squamous cell carcinoma via regulatingCXCR2/NF-kappaB system-mediated epithelial-mesenchymal transition. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(11):1359–1369. doi:10.1007/s00210-019-01671-w
  • Churg A, Dai J, Tai H, Xie C, Wright JL. Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med. 2002;166(6):849–854. doi:10.1164/rccm.200202-097OC
  • Anto RJ, Mukhopadhyay A, Shishodia S, Gairola CG, Aggarwal BB. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis. 2002;23(9):1511–1518. doi:10.1093/carcin/23.9.1511
  • Lin SC, Lu SY, Lee SY, et al. Areca (betel) nut extract activates mitogen-activated protein kinases and NF-kappaB in oral keratinocytes. Int J Cancer. 2005;116(4):526–535. doi:10.1002/ijc.21104
  • Zhang J, Peng B. NF-kappaB promotes iNOS and VEGF expression in salivary gland adenoid cystic carcinoma cells and enhances endothelial cell motility in vitro. Cell Prolif. 2009;42(2):150–161. doi:10.1111/j.1365-2184.2009.00588.x
  • Fahey JM, Korytowski W, Girotti AW. Upstream signaling events leading to elevated production of pro-survival nitric oxide in photodynamically-challenged glioblastoma cells. Free Radic Biol Med. 2019;137:37–45. doi:10.1016/j.freeradbiomed.2019.04.013
  • Nariai Y, Mishima K, Yoshimura Y, Sekine J. FAP-1 and NF-kappaB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis. Int J Oral Maxillofac Surg. 2011;40(4):419–426. doi:10.1016/j.ijom.2010.10.020
  • Bertolino P, Deckers M, Lebrin F, Ten DP. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005;128(6 Suppl):585S–590S. doi:10.1378/chest.128.6_suppl.585S
  • Wu F, Weigel KJ, Zhou H, Wang XJ. Paradoxical roles of TGF-beta signaling in suppressing and promoting squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai). 2018;50(1):98–105. doi:10.1093/abbs/gmx127
  • Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–630. doi:10.1038/nrm3434
  • Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the 628 nucleus. Cell. 2003;113(6):685–700. doi:10.1016/S0092-8674(03)00432-X
  • Hernandez AL, Wang Y, Somerset HL, et al. Inter- and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinomas. Mol Carcinog. 2019;58(5):666–673. doi:10.1002/mc.22958
  • Muro-Cacho CA, Anderson M, Cordero J, Munoz-Antonia T. Expression of transforming growth factor beta type II receptors in head and neck squamous cell carcinoma. Clin Cancer Res. 1999;5(6):1243–1248.
  • Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res. 2002;8(6):1838–1842.
  • Ozawa H, Ranaweera RS, Izumchenko E, et al. SMAD4 loss is associated with cetuximab resistance and induction of MAPK/JNK activation in head and neck cancer cells. Clin Cancer Res. 2017;23(17):5162–5175. doi:10.1158/1078-0432.CCR-16-1686
  • David CJ, Huang YH, Chen M, et al. TGF-beta tumor suppression through a lethal 641 EMT. Cell. 2016;164(5):1015–1030. doi:10.1016/j.cell.2016.01.009
  • Lu SL, Herrington H, Reh D, et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 2006;20(10):1331–1342. doi:10.1101/gad.1413306
  • Pang X, Tang YL, Liang XH. Transforming growth factor-beta signaling in head and neck squamous cell carcinoma: insights into cellular responses. Oncol Lett. 2018;16(4):4799–4806. doi:10.3892/ol.2018.9319
  • Huang Q, Hsueh CY, Shen YJ, et al. Small extracellular vesicle-packaged TGFbeta1 promotes the reprogramming of normal fibroblasts into cancer-associated fibroblasts by regulating fibronectin in head and neck squamous cell carcinoma. Cancer Lett. 2021;517:1–13. doi:10.1016/j.canlet.2021.05.017
  • Zheng L, Guan Z, Xue M. TGF-beta signaling pathway-based model to predict the subtype and prognosis of head and neck squamous cell carcinoma. Front Genet. 2022;13:862860. doi:10.3389/fgene.2022.862860
  • Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor-based signaling and implications for disease. Nat Immunol. 2019;20(12):1594–1602. doi:10.1038/s41590-019-0514-y
  • Li FJ, Cai ZJ, Yang F, Zhang SD, Chen M. Th17 expression and IL-17 levels in laryngeal squamous cell carcinoma patients. Acta Otolaryngol. 2016;136(5):484–490. doi:10.3109/00016489.2015.1126857
  • Avadhani AV, Parachuru VP, Milne T, Seymour GJ, Rich AM. Multiple cells express interleukin 17 in oral squamous cell carcinoma. J Oral Pathol Med. 2017;46(1):39–45. doi:10.1111/jop.12465
  • Liu T, Zong S, Jiang Y, et al. Neutrophils promote larynx squamous cell carcinoma progression via activating the IL-17/JAK/STAT3 pathway. J Immunol Res. 2021;2021:8078646. doi:10.1155/2021/8078646
  • Song Y, Yang M, Zhang H, et al. IL-17 affects the progression, metastasis, and recurrence of laryngeal cancer via the inhibition of apoptosis through activation of the PI3K/AKT/FAS/FASL pathways. J Immunol Res. 2020;2020:2953191. doi:10.1155/2020/2953191
  • Ren L, Xu Y, Liu C, Wang S, Qin G. IL-17RB enhances thyroid cancer cell invasion and metastasis via ERK1/2 pathway-mediated MMP-9 expression. Mol Immunol. 2017;90:126–135. doi:10.1016/j.molimm.2017.06.034
  • Carvalho D, Zanetti BR, Miranda L, et al. High IL-17 expression is associated with an unfavorable prognosis in thyroid cancer. Oncol Lett. 2017;13(3):1925–1931. doi:10.3892/ol.2017.5638
  • Lee MH, Tung-Chieh CJ, Liao CT, et al. Interleukin 17 and peripheral IL-17-expressing T cells are negatively correlated with the overall survival of head and neck cancer patients. Oncotarget. 2018;9(11):9825–9837. doi:10.18632/oncotarget.23934
  • Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–4380. doi:10.1200/JCO.2002.10.088
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–676. doi:10.1038/nm0603-669
  • Christopoulos A, Ahn SM, Klein JD, Kim S. Biology of vascular endothelial growth factor and its receptors in head and neck cancer: beyond angiogenesis. Head Neck. 2011;33(8):1220–1229. doi:10.1002/hed.21588
  • Dunst J, Stadler P, Becker A, et al. Tumor hypoxia and systemic levels of vascular endothelial growth factor (VEGF) in head and neck cancers. Strahlenther Onkol. 2001;177(9):469–473. doi:10.1007/PL00002428
  • Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275. doi:10.1038/20459
  • Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49(3):568–581. doi:10.1016/S0008-6363(00)00268-6
  • Wu A, Luo N, Xu Y, et al. Exosomal LBH inhibits epithelial-mesenchymal transition and angiogenesis in nasopharyngeal carcinoma via downregulating VEGFA signaling. Int J Biol Sci. 2022;18(1):242–260. doi:10.7150/ijbs.66506
  • Song YS, Kim MJ, Sun HJ, et al. Aberrant thyroid-stimulating hormone receptor signaling increases VEGF-A and CXCL8 secretion of thyroid cancer cells, contributing to angiogenesis and tumor growth. Clin Cancer Res. 2019;25(1):414–425. doi:10.1158/1078-0432.CCR-18-0663
  • Sun Q, Zhang T, Xiao Q, Mei B, Zhang X. Procyanidin B2 inhibits angiogenesis and cell growth in oral squamous cell carcinoma cells through the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway. Bioengineered. 2022;13(3):6500–6508. doi:10.1080/21655979.2022.2033013
  • Yasuoka H, Nakamura Y, Zuo H, et al. VEGF-D expression and lymph vessels play an important role for lymph node metastasis in papillary thyroid carcinoma. Mod Pathol. 2005;18(8):1127–1133. doi:10.1038/modpathol.3800402
  • Li DK, Chen XR, Wang LN, et al. Epstein-Barr virus induces lymphangiogenesis and lympth node metastasis via upregulation of VEGF-C in nasopharyngeal carcinoma. Mol Cancer Res. 2022;20(1):161–175. doi:10.1158/1541-7786.MCR-21-0164
  • Ceric S, Ceric T, Pojskic N, et al. Immunohistochemical expression and prognostic significance of VEGF-C in well-differentiated thyroid cancer. Acta Endocrinol (Buchar). 2020;16(4):409–416. doi:10.4183/aeb.2020.409
  • Huang Q, Ji M, Li F, et al. Diagnostic and prognostic value of plasma cell-free DNA combined with VEGF-C in laryngeal squamous cell carcinoma. Mol Cell Probes. 2023;67:101895. doi:10.1016/j.mcp.2023.101895
  • Suto T, Karonitsch T. The immunobiology of mTOR in autoimmunity. J Autoimmun. 2020;110:102373. doi:10.1016/j.jaut.2019.102373
  • Kaldirim M, Lang A, Pfeiler S, et al. Modulation of mTOR signaling in cardiovascular disease to target acute and chronic inflammation. Front Cardiovasc Med. 2022;(9):907348. doi:10.3389/fcvm.2022.907348
  • Ma J, Han LZ, Liang H, et al. Celastrol inhibits the HIF-1alpha pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells. Oncol Rep. 2014;32(1):235–242. doi:10.3892/or.2014.3211
  • Wang Z, Valera JC, Zhao X, Chen Q, Gutkind JS. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev. 2017;36(3):491–502. doi:10.1007/s10555-017-9688-7
  • Zheng A, Li F, Chen F, et al. PD-L1 promotes head and neck squamous cell carcinoma cell growth through mTOR signaling. Oncol Rep. 2019;41(5):2833–2843. doi:10.3892/or.2019.7053
  • Xie J, Li Q, Ding X, Gao Y. Targeting mTOR by CZ415 inhibits head and neck squamous cell carcinoma cells. Cell Physiol Biochem. 2018;46(2):676–686. doi:10.1159/000488724
  • Yang Y, Chen D, Liu H, Yang K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis. 2019;10(2):41. doi:10.1038/s41419-018-1280-8
  • Gao H, Wang W, Li Q. GANT61 suppresses cell survival, invasion and epithelial-mesenchymal transition through inactivating AKT/mTOR and JAK/STAT3 pathways in anaplastic thyroid carcinoma. Cancer Biol Ther. 2022;23(1):369–377. doi:10.1080/15384047.2022.2051158
  • Lv J, Liu C, Chen FK, et al. M2-like tumour-associated macrophage-secreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 2021;24(2). doi:10.3892/mmr.2021.12249
  • Huang ML, Qi CL, Zou Y, et al. Plac8-mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway. J Cell Mol Med. 2020;24(14):7778–7788. doi:10.1111/jcmm.15409
  • Yu JH, Chen L, Yu JY, Luo HQ, Wang L. PI3K-PKB-mTOR hyperactivation in relation to nasopharyngeal carcinoma progression and prognosis. J Cell Biochem. 2019;120(6):10186–10194.
  • Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the role of JAK-STAT and cytokine signaling in oral and gastric cancers. Front Immunol. 2022;13:835997. doi:10.3389/fimmu.2022.835997
  • Mukthavaram R, Ouyang X, Saklecha R, et al. Effect of the JAK2/STAT3 inhibitor SAR317461 on human glioblastoma tumorspheres. J Transl Med. 2015;13:269. doi:10.1186/s12967-015-0627-5
  • Silva CM. Role of STATs as downstream signal transducers in Src family kinase- mediated tumorigenesis. Oncogene. 2004;23(48):8017–8023. doi:10.1038/sj.onc.1208159
  • Jarnicki A, Putoczki T, Ernst M. Stat3: linking inflammation to epithelial cancer – more than a “gut” feeling? Cell Div. 2010;5:14. doi:10.1186/1747-1028-5-14
  • Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136–154. doi:10.1016/j.bbcan.2013.12.005
  • Gaemers IC, Vos HL, Volders HH, van der Valk SW, Hilkens J. A stat-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells. J Biol Chem. 2001;276(9):6191–6199. doi:10.1074/jbc.M009449200
  • Suiqing C, Min Z, Lirong C. Overexpression of phosphorylated-STAT3 correlated with the invasion and metastasis of cutaneous squamous cell carcinoma. J Dermatol. 2005;32(5):354–360. doi:10.1111/j.1346-8138.2005.tb00906.x
  • Lai SY, Johnson FM. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat. 2010;13(3):67–78. doi:10.1016/j.drup.2010.04.001
  • Li H, Liu J, Fan N, et al. Nav1.6 promotes the progression of human follicular thyroid carcinoma cells via JAK-STAT signaling pathway. Pathol Res Pract. 2022;236:153984. doi:10.1016/j.prp.2022.153984
  • Qing X, Tan GL, Liu HW, et al. LINC00669 insulates the JAK/STAT suppressor SOCS1 to promote nasopharyngeal cancer cell proliferation and invasion. J Exp Clin Cancer Res. 2020;39(1):166. doi:10.1186/s13046-020-01674-z
  • Ling J, Zhang L, Chang A, et al. Overexpression of KITLG predicts unfavorable clinical outcomes and promotes lymph node metastasis via the JAK/STAT pathway in nasopharyngeal carcinoma. Lab Invest. 2022;102(11):1257–1267. doi:10.1038/s41374-022-00817-4
  • Chang WM, Chang YC, Yang YC, et al. AKR1C1 controls cisplatin-resistance in head and neck squamous cell carcinoma through cross-talk with the STAT1/3 signaling pathway. J Exp Clin Cancer Res. 2019;38(1):245. doi:10.1186/s13046-019-1256-2
  • Limberg J, Egan CE, Gray KD, et al. Activation of the JAK/STAT pathway leads to BRAF inhibitor resistance in BRAFV600E positive thyroid carcinoma. Mol Cancer Res. 2023;21(5):397–410. doi:10.1158/1541-7786.MCR-21-0832
  • Geiger JL, Grandis JR, Bauman JE. The STAT3 pathway as a therapeutic target in head and neck cancer: barriers and innovations. Oral Oncol. 2016;56:84–92. doi:10.1016/j.oraloncology.2015.11.022
  • Pan Y, Cao S, Tang J, et al. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. J Clin Invest. 2022;132(9):e152391. doi:10.1172/JCI152391
  • Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol. 2023;12:1116014. doi:10.3389/fonc.2022.1116014
  • Zhang Y, Tighe S, Zhu YT. COX-2 signaling in the tumor microenvironment. Adv Exp Med Biol. 2020;1277:87–104.
  • Saito S, Ozawa H, Imanishi Y, et al. Cyclooxygenase-2 expression is associated with chemoresistance through cancer stemness property in hypopharyngeal carcinoma. Oncol Lett. 2021;22(1):533. doi:10.3892/ol.2021.12794
  • Zhu Y, Shi C, Zeng L, et al. High COX-2 expression in cancer-associated fibiroblasts contributes to poor survival and promotes migration and invasiveness in nasopharyngeal carcinoma. Mol Carcinog. 2020;59(3):265–280. doi:10.1002/mc.23150
  • Chiang KH, Shieh JM, Shen CJ, et al. Epidermal growth factor-induced COX-2 regulates metastasis of head and neck squamous cell carcinoma through upregulation of angiopoietin- like 4. Cancer Sci. 2020;111(6):2004–2015. doi:10.1111/cas.14400
  • Wu QB, Sun GP. Expression of COX-2 and HER-2 in colorectal cancer and their correlation. World J Gastroenterol. 2015;21(20):6206–6214. doi:10.3748/wjg.v21.i20.6206
  • Nasry W, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 mediated inflammation in oral squamous cell carcinoma. Cancers (Basel). 2018;10(10):348. doi:10.3390/cancers10100348
  • Mendes RA, Carvalho JF, Waal I. An overview on the expression of cyclooxygenase-2 in tumors of the head and neck. Oral Oncol. 2009;45(10):e124–8. doi:10.1016/j.oraloncology.2009.03.016
  • Yang G, Deng Q, Fan W, et al. Cyclooxygenase-2 expression is positively associated with lymph node metastasis in nasopharyngeal carcinoma. PLoS One. 2017;12(3):e0173641. doi:10.1371/journal.pone.0173641
  • Cheng C, Yang J, Li SW, et al. HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis. 2021;12(2):137. doi:10.1038/s41419-021-03417-0
  • Shui L, Li S, Wang F, et al. Relationship between cyclooxygenase-2 (COX-2) content and prognosis in nasopharyngeal carcinoma before and after radiochemotherapy. J BUON. 2020;25(5):2395–2404.
  • Li YJ, Luo Y, Xie XQ, Li P, Wang F. The prognostic value of COX-2 expression on circulating tumor cells in nasopharyngeal carcinoma: a prospective analysis. Radiother Oncol. 2018;129(2):396–402. doi:10.1016/j.radonc.2018.07.022
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–455. doi:10.1038/nature12034
  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–896. doi:10.1038/ni.1937
  • Bao Z, Zeng W, Zhang D, et al. SNAIL induces EMT and lung metastasis of tumours secreting CXCL2 to promote the invasion of M2-type immunosuppressed macrophages in colorectal cancer. Int J Biol Sci. 2022;18(7):2867–2881. doi:10.7150/ijbs.66854
  • Richards DM, Hettinger J, Feuerer M. Monocytes and macrophages in cancer: development and functions. Cancer Microenviron. 2013;6(2):179–191. doi:10.1007/s12307-012-0123-x
  • Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. doi:10.1016/j.immuni.2014.06.010
  • Vijver SV, Singh A, Mommers-Elshof ETAM, et al. Collagen fragments produced in cancer mediate T cell suppression through leukocyte-associated immunoglobulin-like receptor 1. Front Immunol. 2021;12:733561. doi:10.3389/fimmu.2021.733561
  • Li Y, Hodge J, Liu Q, et al. TFEB is a master regulator of tumor-associated macrophages in breast cancer. J Immunother Cancer. 2020;8(1):e000543. doi:10.1136/jitc-2020-000543
  • Pirila E, Vayrynen O, Sundquist E, et al. Macrophages modulate migration and invasion of human tongue squamous cell carcinoma. PLoS One. 2015;10(3):e0120895. doi:10.1371/journal.pone.0120895
  • Sangaletti S, Di Carlo E, Gariboldi S, et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res. 2008;68(21):9050–9059. doi:10.1158/0008-5472.CAN-08-1327
  • Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer. 2012;12:35. doi:10.1186/1471-2407-12-35
  • Kubota K, Moriyama M, Furukawa S, et al. CD163(+)CD204(+) tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci Rep. 2017;7(1):1755. doi:10.1038/s41598-017-01661-z
  • Solito S, Marigo I, Pinton L, et al. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci. 2014;1319:47–65. doi:10.1111/nyas.12469
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–174. doi:10.1038/nri2506
  • Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118(10):3367–3377. doi:10.1172/JCI35213
  • Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–631. doi:10.1038/nrc2444
  • Pang X, Fan HY, Tang YL, et al. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS One. 2020;15(2):e0229089. doi:10.1371/journal.pone.0229089
  • Fugle CW, Zhang Y, Hong F, et al. CD24 blunts oral squamous cancer development and dampens the functional expansion of myeloid-derived suppressor cells. Oncoimmunology. 2016;5(10):e1226719. doi:10.1080/2162402X.2016.1226719
  • Angell TE, Lechner MG, Smith AM, et al. Circulating myeloid-derived suppressor cells predict differentiated thyroid cancer diagnosis and extent. Thyroid. 2016;26(3):381–389. doi:10.1089/thy.2015.0289
  • Davis RJ, Van Waes C, Allen CT. Overcoming barriers to effective immunotherapy: mDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol. 2016;58:59–70. doi:10.1016/j.oraloncology.2016.05.002
  • Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18(4):842–859. doi:10.1038/s41423-020-00565-9
  • Hibino S, Kawazoe T, Kasahara H, et al. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021;22(11):5421. doi:10.3390/ijms22115421
  • Kryczek I, Lin Y, Nagarsheth N, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2014;40(5):772–784. doi:10.1016/j.immuni.2014.03.010
  • Lei Y, Xie Y, Tan YS, et al. Telltale tumor infiltrating lymphocytes (TIL) in oral, head & neck cancer. Oral Oncol. 2016;61:159–165. doi:10.1016/j.oraloncology.2016.08.003
  • Zhou Z, Mu D, Zhang D, et al. PD-L1 in combination with CD8(+)TIL and HIF-1alpha are promising prognosis predictors of head and neck squamous cell carcinoma. Cancer Manag Res. 2020;12:13233–13239. doi:10.2147/CMAR.S285691
  • Kawaguchi T, Ono T, Sato F, et al. CD8+ T cell infiltration predicts chemoradiosensitivity in nasopharyngeal or oropharyngeal cancer. Laryngoscope. 2021;131(4):E1179–E1189. doi:10.1002/lary.29097
  • Cho BC, Daste A, Ravaud A, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in advanced squamous cell carcinoma of the head and neck: results from a Phase I cohort. J Immunother Cancer. 2020;8(2):e000664. doi:10.1136/jitc-2020-000664
  • Jimeno A, Posner MR, Wirth LJ, et al. A phase 2 study of dalantercept, an activin receptor-like kinase-1 ligand trap, in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Cancer. 2016;122(23):3641–3649. doi:10.1002/cncr.30317
  • Argiris A, Kotsakis AP, Hoang T, et al. Cetuximab and bevacizumab: preclinical data and Phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck. Ann Oncol. 2013;24(1):220–225. doi:10.1093/annonc/mds245
  • Dunn LA, Fury MG, Xiao H, et al. A phase II study of temsirolimus added to low-dose weekly carboplatin and paclitaxel for patients with recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Ann Oncol. 2017;28(10):2533–2538. doi:10.1093/annonc/mdx346
  • Weed DT, Vella JL, Reis IM, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(1):39–48 879. doi:10.1158/1078-0432.CCR-14-1711