174
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Impact of Moderate Physical Activity on Inflammatory Markers and Telomere Length in Sedentary and Moderately Active Individuals with Varied Insulin Sensitivity

ORCID Icon, , , , &
Pages 5427-5438 | Received 27 Aug 2023, Accepted 07 Nov 2023, Published online: 20 Nov 2023

References

  • Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.
  • Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055–1081. doi:10.1152/physrev.2000.80.3.1055
  • Bruunsgaard H, Skinhoj P, Qvist J, Pedersen BK. Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infections. J Infect Dis. 1999;180(2):551–554. doi:10.1086/314873
  • Croisier JL, Camus G, Venneman I, et al. Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve. 1999;22(2):208–212. doi:10.1002/(SICI)1097-4598(199902)22:2<208::AID-MUS8>3.0.CO;2-B
  • Wang S, Zhou H, Zhao C, He H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: a Systematic Review and Network Meta-Analysis. Front Immunol. 2022;13:921085. doi:10.3389/fimmu.2022.921085
  • Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515(Pt 1):287–291. doi:10.1111/j.1469-7793.1999.287ad.x
  • Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM. Skeletal muscle IL-4, IL-4Ralpha, IL-13 and IL-13Ralpha1 expression and response to strength training. Exerc Immunol Rev. 2007;13:67–75.
  • Tinahones FJ, Murri-Pierri M, Garrido-Sanchez L, et al. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity. 2009;17(2):240–246. doi:10.1038/oby.2008.536
  • Hoseini R, Rahim HA, Ahmed JK. Concurrent alteration in inflammatory biomarker gene expression and oxidative stress: how aerobic training and vitamin D improve T2DM. BMC Complement Med Ther. 2022;22(1):165. doi:10.1186/s12906-022-03645-7
  • Nishida Y, Higaki Y, Taguchi N. Objectively measured physical activity and inflammatory cytokine levels in middle-aged Japanese people. Prev Med. 2014;64:81–87. doi:10.1016/j.ypmed.2014.04.004
  • Tonkonogi M, Walsh B, Svensson M, Sahlin K. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol. 2000;528(Pt 2):379–388. doi:10.1111/j.1469-7793.2000.00379.x
  • Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84(1–2):1–6. doi:10.1007/s004210000342
  • Leeuwenburgh C, Hollander J, Leichtweis S, et al. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol. 1997;272(1 Pt 2):R363–9. doi:10.1152/ajpregu.1997.272.1.R363
  • Tiidus PM, Pushkarenko J, Houston ME. Lack of antioxidant adaptation to short-term aerobic training in human muscle. Am J Physiol. 1996;271(4 Pt 2):R832–6. doi:10.1152/ajpregu.1996.271.4.R832
  • Dimauro I, Grazioli E, Lisi V, et al. Systemic response of antioxidants, heat shock proteins, and inflammatory biomarkers to short-lasting exercise training in healthy male subjects. Oxidative Medicine and Cellular Longevity. 2021;2021:1–15. doi:10.1155/2021/1938492
  • Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget. 2017;8(27):45008–45019. doi:10.18632/oncotarget.16726
  • Tucker LA. Physical activity and telomere length in U.S. men and women: an NHANES investigation. Prev Med. 2017;100:145–151. doi:10.1016/j.ypmed.2017.04.027
  • von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–344. doi:10.1016/S0968-0004(02)02110-2
  • Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35(5):1147–1150. doi:10.1042/BST0351147
  • Navarro-Mateu F, Rubio-Aparicio M, Cayuela P, et al. The association of telomere length with substance use disorders: systematic review and meta-analysis protocol. Syst Rev. 2019;8:298. doi:10.1186/s13643-019-1199-x
  • Cheng F, Luk AO, Shi M, et al. Shortened leukocyte telomere length is associated with glycemic progression in type 2 diabetes: a prospective and Mendelian randomization analysis. Diabetes Care. 2022;45:701–709.
  • Zhao J, Zhu Y, Lin J, et al. Short leukocyte telomere length predicts risk of diabetes in American Indians: the strong heart family study. Diabetes. 2014;63(1):354–362. doi:10.2337/db13-0744
  • You NC, Chen BH, Song Y, et al. A prospective study of leukocyte telomere length and risk of type 2 diabetes in postmenopausal women. Diabetes. 2012;61(11):2998–3004. doi:10.2337/db12-0241
  • Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014:102158. doi:10.1155/2014/102158
  • Ibarra MJN, Hernández J, Juvera GCJNH. Diet, physical activity and telomere length in adults. Nutricion hospitalaria. 2019;36(6):1403–1417. doi:10.20960/nh.02673
  • Kalea AZ, Drosatos K. Nutriepigenetics and cardiovascular disease. Diabetes Care. 2018;21:252.
  • Al Kuwari H, Al Thani A, Al Marri A, et al. The Qatar Biobank: background and methods. BMC Public Health. 2015;15:1–9.
  • Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13(1):47. doi:10.1186/1472-6823-13-47
  • Chaabna K, Mamtani R, Abraham A, Maisonneuve P, Lowenfels AB, Cheema S. Physical Activity and Its Barriers and Facilitators among University Students in Qatar: a Cross-Sectional Study. Int J Environ Res Public Health. 2022;19(12):7369. doi:10.3390/ijerph19127369
  • Sayegh S, Van Der Walt M, Al-Kuwari MG. One-year assessment of physical activity level in adult Qatari females: a pedometer-based longitudinal study. Int J Womens Health. 2016;8:287–293. doi:10.2147/IJWH.S99943
  • Griffin A, Roselli T, Clemens SL. Trends in Total Physical Activity Time, Walking, and Vigorous Physical Activity Time in Queensland Adults From 2004-2018. J Phys Act Health. 2020;17(6):592–602. doi:10.1123/jpah.2019-0282
  • Majed L, Sayegh S, Chrismas BCR. Reference Walking Speeds for Healthy Young Adults in Qatar: moderating Effect of Obesity and Physical Activity. SAGE Open. 2022;12(1):21582440221079919. doi:10.1177/21582440221079919
  • Sellami M, Al-Muraikhy S, Al-Jaber H, et al. Age and sport intensity-dependent changes in cytokines and telomere length in elite athletes. Antioxidants. 2021;10:1035.
  • Carey AL, Febbraio MA. Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia. 2004;47(7):1135–1142. doi:10.1007/s00125-004-1447-y
  • Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH, et al. Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: a Randomized Controlled Trial. Cell Metab. 2019;29(4):844–855 e3. doi:10.1016/j.cmet.2018.12.007
  • Pedersen BK, Bruunsgaard H, Ostrowski K, et al. Cytokines in aging and exercise. Int J Sports Med. 2000;21 Suppl 1:S4–9. doi:10.1055/s-2000-1444
  • Pedersen BK, Steensberg A, Fischer C, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2/3):113–119. doi:10.1023/A:1026070911202
  • Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–465. doi:10.1038/nrendo.2012.49
  • Hiscock N, Fischer CP, Sacchetti M, van Hall G, Febbraio MA, Pedersen BK. Recombinant human interleukin-6 infusion during low-intensity exercise does not enhance whole body lipolysis or fat oxidation in humans. Am J Physiol Endocrinol Metab. 2005;289(1):E2–7. doi:10.1152/ajpendo.00274.2004
  • Docherty S, Harley R, McAuley JJ, et al. The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Sci Med Rehabil. 2022;14:5. doi:10.1186/s13102-022-00397-2
  • McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8(12):1390–1397. doi:10.1038/ni1539
  • Kim SJ, Lim J, Nam GE, Park HS. Correlation between Serum Lipid Parameters and Interleukin-10 Concentration in Obese Individuals. J Obes Metab Syndr. 2021;30(2):173–177. doi:10.7570/jomes20122
  • Stewart LK, Flynn MG, Campbell WW, et al. The influence of exercise training on inflammatory cytokines and C-reactive protein. Med Sci Sports Exerc. 2007;39(10):1714–1719. doi:10.1249/mss.0b013e31811ece1c
  • Nieman DC, Pedersen BK. Exercise and immune function. Recent Developments Sports Med. 1999;27:73–80.
  • Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34:246–251. doi:10.1136/bjsm.34.4.246
  • Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–1276. doi:10.1152/physrev.00031.2007
  • de Sousa CV, Sales MM, Rosa TS, Lewis JE, de Andrade RV, Simoes HG. The Antioxidant Effect of Exercise: a Systematic Review and Meta-Analysis. Sports Med. 2017;47(2):277–293. doi:10.1007/s40279-016-0566-1
  • Xu Y, Liang M, Ugbolue UC, Fekete G, Gu Y. Effect of Physical Exercise Under Different Intensity and Antioxidative Supplementation for Plasma Superoxide Dismutase in Healthy Adults: systematic Review and Network Meta-Analysis. Front Physiol. 2022;13:707176. doi:10.3389/fphys.2022.707176
  • Skarpanska-Stejnborn A, Pilaczynska-Szczesniak L, Basta P, Deskur-Smielecka E, Woitas-Slubowska D, Adach Z. Effects of oral supplementation with plant superoxide dismutase extract on selected redox parameters and an inflammatory marker in a 2000-m rowing-ergometer test. Int J Sport Nutr Exerc Metab. 2011;21(2):124–134. doi:10.1123/ijsnem.21.2.124
  • Carillon J, Notin C, Schmitt K, Simoneau G, Lacan D. Dietary supplementation with a superoxide dismutase-melon concentrate reduces stress, physical and mental fatigue in healthy people: a randomised, double-blind, placebo-controlled trial. Nutrients. 2014;6(6):2348–2359. doi:10.3390/nu6062348
  • Yan Z, Spaulding HR. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol. 2020;32:101508. doi:10.1016/j.redox.2020.101508
  • Ookawara T, Haga S, Ha S, et al. Effects of endurance training on three superoxide dismutase isoenzymes in human plasma. Free Radic Res. 2003;37(7):713–719. doi:10.1080/1071576031000102132
  • Sellami M, Al-Muraikhy S, Al-Jaber H, et al. Age and Sport Intensity-Dependent Changes in Cytokines and Telomere Length in Elite Athletes. Antioxidants. 2021;10:548.
  • Werner CM, Hecksteden A, Zundler J, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. doi:10.1093/eurheartj/ehy585
  • Borghini A, Giardini G, Tonacci A, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015;30(5):711–716. doi:10.1093/mutage/gev038
  • Mundstock E, Zatti H, Louzada FM, et al. Effects of physical activity in telomere length: systematic review and meta-analysis. Ageing Res Rev. 2015;22:72–80. doi:10.1016/j.arr.2015.02.004