205
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Silver Nanoparticles and Graphene Oxide Complex as an Anti-Inflammatory Biocompatible Liquid Nano-Dressing for Skin Infected with Staphylococcus aureus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5477-5493 | Received 20 Jul 2023, Accepted 05 Oct 2023, Published online: 21 Nov 2023

References

  • Solberg CO. Spread of Staphylococcus aureus in hospitals: causes and prevention. Scand J Infect Dis. 2000;32(6):587–595. doi:10.1080/003655400459478
  • Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46(SUPPL. 5):350–359. doi:10.1086/533591
  • Kim JJ, Kristie J, Phd J, et al. Burden of perianal Staphylococcus aureus colonization in nursing home residents increases transmission to healthcare worker gowns and gloves. Cambridge.org. 2020;41:1396–1401. doi:10.1017/ice.2020.336
  • Bukharie H. A review of community-acquired methicillin-resistant Staphylococcus aureus for primary care physicians. J Fam Community Med. 2010;17(3):117–120. doi:10.4103/1319-1683.74320
  • Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol. 2016;100(15):6555–6570. doi:10.1007/S00253-016-7657-7
  • Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2). doi:10.3390/ijms20020449
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi:10.1016/j.micpath.2017.11.013
  • Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–353. doi:10.1016/S0168-6445(03)00047-0
  • Yin IX, J Z, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020;15:2555–2562. doi:10.2147/IJN.S246764
  • You C, Han C, Wang X, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39(9):9193–9201. doi:10.1007/S11033-012-1792-8
  • Mohamad EA, Ramadan MA, Mostafa MM, Elneklawi MS. Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus. Electromagn Biol Med. 2023. doi:10.1080/15368378.2023.2208610
  • León-Silva S, Fernández-Luqueño F, López-Valdez F. Silver Nanoparticles (AgNP) in the Environment: a Review of Potential Risks on Human and Environmental Health. Water Air Soil Pollut. 2016;227(9). doi:10.1007/s11270-016-3022-9
  • Zielińska-Górska M, Sawosz E, Sosnowska M, et al. Molecular Biocompatibility of a Silver Nanoparticle Complex with Graphene Oxide to Human Skin in a 3D Epidermis In Vitro Model. Pharmaceutics. 2022;14(7):1398. doi:10.3390/pharmaceutics14071398
  • Yan X, Fang WW, Xue J, et al. Thermoresponsive in Situ Forming Hydrogel with Sol-Gel Irreversibility for Effective Methicillin-Resistant Staphylococcus aureus Infected Wound Healing. ACS Nano. 2019;13(9):10074–10084. doi:10.1021/acsnano.9b02845
  • Zhang Y, Li M, Wang Y, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioact Mater. 2023;26:323–336. doi:10.1016/j.bioactmat.2023.01.020
  • Huang Y, Mu L, Zhao X, Han Y, Guo B. Bacterial Growth-Induced Tobramycin Smart Release Self-Healing Hydrogel for Pseudomonas aeruginosa-Infected Burn Wound Healing. ACS Nano. 2022;16(8):13022–13036. doi:10.1021/ACSNANO.2C05557
  • Liang Y, Qiao L, Qiao B, Guo B. Conductive hydrogels for tissue repair. Chem Sci. 2023;14(12):3091–3116. doi:10.1039/d3sc00145h
  • Cameron SJ, Hosseinian F, Willmore WG. A current overview of the biological and cellular effects of nanosilver. Int J Mol Sci. 2018;19(7). doi:10.3390/ijms19072030
  • Lange A, Sawosz E, Wierzbicki M, et al. Nanocomposites of Graphene Oxide—Silver Nanoparticles for Enhanced Antibacterial Activity: mechanism of Action and Medical Textiles Coating. Materials. 2022;15(9):3122. doi:10.3390/ma15093122
  • Kurantowicz N, Strojny B, Sawosz E, et al. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. Nanoscale Res Lett. 2015;10(1). doi:10.1186/S11671-015-1107-9
  • Zou X, Zhang L, Wang Z, Luo Y. Mechanisms of the Antimicrobial Activities of Graphene Materials. J Am Chem Soc. 2016;138(7):2064–2077. doi:10.1021/JACS.5B11411
  • Hegab HM, Elmekawy A, Zou L, Mulcahy D, Saint CP, Ginic-Markovic M. The controversial antibacterial activity of graphene-based materials. Carbon N Y. 2016;105:362–376. doi:10.1016/j.carbon.2016.04.046
  • Wierzbicki M, Jaworski S, Sawosz E, et al. Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. Nanoscale Res Lett. 2019;14(1). doi:10.1186/S11671-019-3166-9
  • Sosnowska M, Kutwin M, Strojny B, et al. Graphene oxide nanofilm and chicken embryo extract decrease the invasiveness of HepG2 liver cancer cells. Cancer Nanotechnol. 2021;12(1):1–33. doi:10.1186/s12645-020-00073-5
  • Carpentier G, Henault E Protein Array Analyzer for ImageJ. In: centre de Recherche Public Henri Tudor, Proceedings of the 617 ImageJ User and Developer Conference, Centre de Recherche Public Henri Tudor; 2010:238–240.
  • Jaworski S, Wierzbicki M, Sawosz E, et al. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res Lett. 2018;13(1). doi:10.1186/S11671-018-2533-2
  • Li J, Liu C-Y. Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem. 2010;(8):1244–1248. doi:10.1002/ejic.200901048
  • Kolwas K, Derkachova A. Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials. 2020;10(7):1–27. doi:10.3390/nano10071411
  • Bartosewicz B, Michalska-Domanska M, Liszewska M, Zasada D, Jankiewicz BJ. Synthesis and characterization of noble metal-titania core-shell nanostructures with tunable shell thickness. Beilstein J Nanotechnol. 2017;8(1):2083–2093. doi:10.3762/bjnano.8.208
  • Mmaduka Obodo R, Ahmad I, Ifeanyichukwu Ezema F. Introductory Chapter: graphene and Its Applications. Graphene and Its Derivatives. 2019. doi:10.5772/intechopen.86023
  • Ali I, Basheer AA, Mbianda XY, et al. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int. 2019;127:160–180. doi:10.1016/j.envint.2019.03.029
  • Arias FA, Guevara M, Tene T, et al. The adsorption of methylene blue on eco-friendly reduced graphene oxide. Nanomaterials. 2020;10(4). doi:10.3390/nano10040681
  • Peterson LR, Schora DM. Methicillin-Resistant Staphylococcus aureus Control in the 21st Century: laboratory Involvement Affecting Disease Impact and Economic Benefit from Large Population Studies. J Clin Microbiol. 2016;54(11):2647–2654. doi:10.1128/JCM.00698-16
  • Al Kindi A, Alkahtani AM, Nalubega M, et al. Staphylococcus aureus internalized by skin keratinocytes evade antibiotic killing. Front Microbiol. 2019;10(SEP). doi:10.3389/fmicb.2019.02242
  • Chwalibog A, Sawosz E, Hotowy A, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010;5(1):1085–1094. doi:10.2147/IJN.S13532
  • Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for Biomedical Applications—Synthesis and Characterization—A Review. Int J Mol Sci. 2022;23(10). doi:10.3390/ijms23105778
  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72. doi:10.1016/j.micpath.2018.02.008
  • Brignoli T, Douglas E, Duggan S, et al. Wall Teichoic Acids Facilitate the Release of Toxins from the Surface of Staphylococcus aureus. Microbiol Spectr. 2022;10(4). doi:10.1128/spectrum.01011-22
  • Li MJ, Liu CM, Cao HB, Zhang Y. Surface Charge Research of Graphene Oxide, Chemically Reduced Graphene Oxide and Thermally Exfoliated Graphene Oxide. Adv Mater Res. 2013;716:127–131. doi:10.4028/www.scientific.net/AMR.716.127
  • Tu Q, Pang L, Chen Y, et al. Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst. 2014;139(1):105–115. doi:10.1039/c3an01796f
  • Romero-Vargas CS, Perreault F, De Faria AF, Elimelech M. Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy. Environ Sci Technol Lett. 2015;2(4):112–117. doi:10.1021/acs.estlett.5b00066
  • Jaworski S, Wierzbicki M, Sawosz E, et al. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res Lett. 2018;13(1):1–17. doi:10.1186/s11671-018-2533-2
  • Kang SJ, Cho S, Kim KH, Cho ES. Proteomic Analysis to Elucidate the Antibacterial Action of Silver Ions Against Bovine Mastitis Pathogens. Biol Trace Elem Res. 2016;171(1):101–106. doi:10.1007/s12011-015-0510-5
  • Khalandi B, Asadi N, Milani M, et al. A Review on Potential Role of Silver Nanoparticles and Possible Mechanisms of their Actions on Bacteria. Drug Res. 2016;67(02):70–76. doi:10.1055/s-0042-113383
  • Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-a minireview. Nanoscale Horizons. 2019;4(1):117–137. doi:10.1039/c8nh00174j
  • Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res. 2010;12(5):1531–1551. doi:10.1007/s11051-010-9900-y
  • Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020;10(5):1369–1378. doi:10.1007/s13204-020-01318-w
  • Agere SA, Akhtar N, Watson JM, Ahmed S. RANTES/CCL5 induces collagen degradation by activating MMP-1 and MMP-13 expression in human rheumatoid arthritis synovial fibroblasts. Front Immunol. 2017;8(OCT). doi:10.3389/fimmu.2017.01341
  • Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7. doi:10.1186/1743-8977-7-20
  • Murata S, Kaneko S, Morita E. Interleukin-8 Levels in the Stratum Corneum as a Biomarker for Monitoring Therapeutic Effect in Atopic Dermatitis Patients. Int Arch Allergy Immunol. 2021;182(7):592–606. doi:10.1159/000512965
  • Gonzalo JA, Martinez AC, Springer TA, Gutierrez-Ramos JC. ICAM-1 is required for T cell proliferation but not for anergy or apoptosis induced by Staphylococcus aureus enterotoxin B in vivo. Int Immunol. 1995;7(10):1691–1698. doi:10.1093/intimm/7.10.1691
  • Matsunaga T, Katayama I, Yokozeki H, Nishioka K. ICAM-1 expression on keratinocytes in mechanically-injured skin of a patient with atopic dermatitis. J Dermatol Sci. 1996;12(3):219–226. doi:10.1016/0923-1811(95)00476-9
  • Domenech J, Hernández A, Demir E, Marcos R, Cortés C. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-59755-0
  • Lategan K, Alghadi H, Bayati M, de Cortalezzi MF, Pool E. Effects of graphene oxide nanoparticles on the immune system biomarkers produced by RAW 264.7 and human whole blood cell cultures. Nanomaterials. 2018;8(2). doi:10.3390/nano8020125
  • VanHook AM. Antibiotic-induced inflammation. Sci Signal. 2022;15(745):eade1683. doi:10.1126/scisignal.ade1683
  • Spees AM, Wangdi T, Lopez CA, et al. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. MBio. 2013;4(4):430–443. doi:10.1128/mBio.00430-13
  • Tang Q, Precit MR, Thomason MK, et al. Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial infection. Cell Host Microbe. 2022;30(7):961–974.e6. doi:10.1016/j.chom.2022.03.028
  • Anton D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16(3):5517–5527. doi:10.3390/ijms16035517
  • Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol. 2006;2(11):619–626. doi:10.1038/ncprheum0338
  • Weidhase L, Wellhöfer D, Schulze G, et al. Is Interleukin-6 a better predictor of successful antibiotic therapy than procalcitonin and C-reactive protein? A single center study in critically ill adults. BMC Infect Dis. 2019;19(1). doi:10.1186/s12879-019-3800-2
  • Bailly S, Fay M, Gougerot-Pocidalo MA. Effects of antibiotics on production of cytokines by human monocytes. Pathol Biol. 1993;41(8):64.
  • Li J, Farthing PM, Thornhill MH. Oral and skin keratinocytes are stimulated to secrete monocyte chemoattractant protein-1 by tumour necrosis factor-α and interferon-γ. J Oral Pathol Med. 2000;29(9):438–444. doi:10.1034/j.1600-0714.2000.290904.x
  • Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res. 2009;29(6):313–325. doi:10.1089/jir.2008.0027
  • Fleischmajer R, Kuroda K, Hazan R, et al. Basement membrane alterations in psoriasis are accompanied by epidermal overexpression of MMP-2 and its inhibitor TIMP-2. J Invest Dermatol. 2000;115(5):771–777. doi:10.1046/j.1523-1747.2000.00138.x
  • Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108(3):787–799. doi:10.1002/JLB.2MR0220-549R
  • Usami Y, Ishida K, Sato S, et al. Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 2013;133(3):568–578. doi:10.1002/ijc.28066
  • Sumagin R, Brazil JC, Nava P, et al. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol. 2016;9(5):1151–1162. doi:10.1038/mi.2015.135
  • Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. J Immunol. 2003;170(6):3369–3376. doi:10.4049/jimmunol.170.6.3369
  • Wierzbicki M, Hotowy A, Kutwin M, et al. Graphene oxide scaffold stimulates differentiation and proangiogenic activities of myogenic progenitor cells. Int J Mol Sci. 2020;21(11):1–16. doi:10.3390/ijms21114173