92
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease

, , &
Pages 6349-6359 | Received 22 Jul 2023, Accepted 03 Dec 2023, Published online: 25 Dec 2023

References

  • Niu H, Song D, Mu H, Zhang W, Sun F, Duan J. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int J Biol Macromol. 2016;86:587–593. doi:10.1016/j.ijbiomac.2016.01.111
  • Hu Y, Sheng Y, Yu M, et al. Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice. Int J Biol Macromol. 2016;87:348–356. doi:10.1016/j.ijbiomac.2016.03.006
  • Anil DA, Aydin BO, Demir Y, Turkmenoglu B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct. 2022;1257:132613. doi:10.1016/j.molstruc.2022.132613
  • Antonio G-P, Maria S, David V, Marcus L, Luis Garcia R. Incidence and risk factors for mortality and end-stage renal disease in people with type 2 diabetes and diabetic kidney disease: a population-based cohort study in the UK. BMJ Open Diabetes Res Care. 2021;9(1):e002146. doi:10.1136/bmjdrc-2021-002146
  • Misra A, Gopalan H, Jayawardena R, et al. Diabetes in developing countries. J Diabetes. 2019;11(7):522–539. doi:10.1111/1753-0407.12913
  • Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets. 2019;23(7):579–591. doi:10.1080/14728222.2019.1624721
  • Sever B, Altıntop MD, Demir Y, et al. Identification of a new class of potent aldose reductase inhibitors: design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact. 2021;345:109576. doi:10.1016/j.cbi.2021.109576
  • Lee MW, Hur H, Chang KC, Lee TS, Ka KH, Jankovsky L. Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology. 2008;36(4):199–202. doi:10.4489/MYCO.2008.36.4.199
  • Persoon CH. Synopsis Methodica Fungorum. Pars Secunda. Göttingen, German: Henricum Dieterich; 1801.
  • Gery A, Dubreule C, Andre V, et al. Chaga (Inonotus obliquus), a future potential medicinal fungus in oncology? A chemical study and a comparison of the cytotoxicity against human lung adenocarcinoma cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B). Integr Cancer Ther. 2018;17(3):832–843. doi:10.1177/1534735418757912
  • Kim J, Yang SC, Hwang AY, Cho H, Hwang KT. Composition of triterpenoids in Inonotus obliquus and their anti-proliferative activity on cancer cell lines. Molecules. 2020;25(18). doi:10.3390/molecules25184066
  • Ma L, Chen H, Dong P, Lu X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013;139(1–4):503–508. doi:10.1016/j.foodchem.2013.01.030
  • Van Q, Nayak BN, Reimer M, Jones PJ, Fulcher RG, Rempel CB. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J Ethnopharmacol. 2009;125(3):487–493. doi:10.1016/j.jep.2009.06.026
  • Xiang Y, Xu X, Li J. Chemical properties and antioxidant activity of exopolysaccharides fractions from mycelial culture of Inonotus obliquus in a ground corn stover medium. Food Chem. 2012;134(4):1899–1905. doi:10.1016/j.foodchem.2012.03.121
  • Liu P, Xue J, Tong S, Dong W, Wu P. Structure characterization and hypoglycaemic activities of two polysaccharides from Inonotus obliquus. Molecules. 2018;23(8). doi:10.3390/molecules23081948
  • Chou YJ, Kan WC, Chang CM, et al. Renal protective effects of low molecular weight of Inonotus obliquus polysaccharide (LIOP) on HFD/STZ-induced nephropathy in mice. Int J Mol Sci. 2016;17(9):1535. doi:10.3390/ijms17091535
  • Zheng W, Zhang M, Zhao Y, et al. Analysis of antioxidant metabolites by solvent extraction from sclerotia of Inonotus obliquus (Chaga). Phytochem Anal. 2011;22(2):95–102. doi:10.1002/pca.1225
  • Zs JX, Jiang J, Luo P, Duan F, Zhang J. Research on the optimization of exaction parameter for polysaccharide of Inonotus obliquus and its antioxidant activity. J Nat Sci Heilongjiang Univ. 2017;2017:1.
  • Zong S, Yu Z, Zhao D, et al. Optimization of extraction technology for polysaccharides in Inonotus obliquus. Chin J Mod Appl Pharm. 2014;2014:167–172.
  • Chen X, Zhu Z, Li X, Yao X, Luo L. The ferroptosis-related noncoding RNA signature as a novel prognostic biomarker in the tumor microenvironment, immunotherapy, and drug screening of gastric adenocarcinoma. Front Oncol. 2021;11:778557. doi:10.3389/fonc.2021.778557
  • Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 2006;33(10):940–945. doi:10.1111/j.1440-1681.2006.04468.x
  • Kim HK, Park Y, Shin M, Kim JM, Go GW. Betulinic acid suppresses de novo lipogenesis by inhibiting insulin and IGF1 signaling as upstream effectors of the nutrient-sensing mTOR pathway. J Agric Food Chem. 2021;69(42):12465–12473. doi:10.1021/acs.jafc.1c04797
  • Ajala-Lawal RA, Aliyu NO, Ajiboye TO. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways. Arch Physiol Biochem. 2020;126(2):107–115. doi:10.1080/13813455.2018.1498901
  • Jin KS, Oh YN, Hyun SK, Kwon HJ, Kim BW. Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem Toxicol. 2014;68:38–43. doi:10.1016/j.fct.2014.03.001
  • Jiao S, Zhu H, He P, Teng J. Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Biomed Pharmacother. 2016;84:1533–1537. doi:10.1016/j.biopha.2016.11.028
  • Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med. 2017;40(6):1669–1678. doi:10.3892/ijmm.2017.3163
  • Savova MS, Vasileva LV, Mladenova SG, et al. Ziziphus jujuba Mill. leaf extract restrains adipogenesis by targeting PI3K/AKT signaling pathway. Biomed Pharmacother. 2021;141:111934. doi:10.1016/j.biopha.2021.111934
  • Majeed R, Hussain A, Sangwan PL, et al. PI3K target based novel cyano derivative of betulinic acid induces its signalling inhibition by down-regulation of pGSK3beta and cyclin D1 and potentially checks cancer cell proliferation. Mol Carcinog. 2016;55(5):964–976. doi:10.1002/mc.22339
  • Wu C, Chen H, Zhuang R, et al. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. Int J Biol Sci. 2021;17(4):1138–1152. doi:10.7150/ijbs.57825
  • Lee D, Lee SR, Kang KS, et al. Betulinic acid suppresses ovarian cancer cell proliferation through induction of apoptosis. Biomolecules. 2019;9(7). doi:10.3390/biom9070257
  • Mioc M, Mioc A, Prodea A, et al. Novel triterpenic acid-benzotriazole esters act as pro-apoptotic antimelanoma agents. Int J Mol Sci. 2022;23(17):9992. doi:10.3390/ijms23179992
  • Kim SY, Hwangbo H, Kim MY, et al. Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules. 2021;26(5). doi:10.3390/molecules26051381
  • El-Baba C, Baassiri A, Kiriako G, et al. Terpenoids’ anti-cancer effects: focus on autophagy. Apoptosis. 2021;26(9–10):491–511. doi:10.1007/s10495-021-01684-y
  • Zhao Y, Shi X, Wang J, Mang J, Xu Z. Betulinic acid ameliorates cerebral injury in middle cerebral artery occlusion rats through regulating autophagy. ACS Chem Neurosci. 2021;12(15):2829–2837. doi:10.1021/acschemneuro.1c00198
  • Zheng LY, Zou X, Wang YL, et al. Betulinic acid-nucleoside hybrid prevents acute alcohol -induced liver damage by promoting anti-oxidative stress and autophagy. Eur J Pharmacol. 2022;914:174686. doi:10.1016/j.ejphar.2021.174686
  • Zhao H, Wu L, Zhang Y, et al. Betulinic acid prevents liver fibrosis by binding Lck and suppressing Lck in HSC activation and proliferation. J Ethnopharmacol. 2022;296:115459. doi:10.1016/j.jep.2022.115459
  • Zhan XK, Li JL, Zhang S, Xing PY, Xia MF. Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis. Oncol Lett. 2018;16(3):3628–3634. doi:10.3892/ol.2018.9097
  • Chen S, Bai Y, Li Z, et al. A betulinic acid derivative SH479 inhibits collagen-induced arthritis by modulating T cell differentiation and cytokine balance. Biochem Pharmacol. 2017;126:69–78. doi:10.1016/j.bcp.2016.12.006
  • Liu Y, Bi Y, Mo C, et al. Betulinic acid attenuates liver fibrosis by inducing autophagy via the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. J Nat Med. 2019;73(1):179–189. doi:10.1007/s11418-018-1262-2
  • Ou Z, Zhu L, Huang C, et al. Betulinic acid attenuates cyclophosphamide-induced intestinal mucosa injury by inhibiting the NF-kappaB/MAPK signalling pathways and activating the Nrf2 signalling pathway. Ecotoxicol Environ Saf. 2021;225:112746. doi:10.1016/j.ecoenv.2021.112746
  • Wei J, Li Y, Liu Q, et al. Betulinic acid protects from bone loss in ovariectomized mice and suppresses RANKL-associated osteoclastogenesis by inhibiting the MAPK and NFATc1 pathways. Front Pharmacol. 2020;11:1025. doi:10.3389/fphar.2020.01025
  • Zhu L, Yi X, Zhao J, et al. Betulinic acid attenuates dexamethasone-induced oxidative damage through the JNK-P38 MAPK signaling pathway in mice. Biomed Pharmacother. 2018;103:499–508. doi:10.1016/j.biopha.2018.04.073
  • Lin X, Zhu L, Gao X, et al. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. Ecotoxicol Environ Saf. 2022;238:113561. doi:10.1016/j.ecoenv.2022.113561
  • Jeong DH, Kwak SC, Lee MS, Yoon KH, Kim JY, Lee CH. Betulinic acid inhibits RANKL-induced osteoclastogenesis via attenuating Akt, NF-kappaB, and PLCgamma2-Ca(2+) signaling and prevents inflammatory bone loss. J Nat Prod. 2020;83(4):1174–1182. doi:10.1021/acs.jnatprod.9b01212
  • Cheng Z, Yao W, Zheng J, et al. A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp Eye Res. 2019;180:92–101. doi:10.1016/j.exer.2018.12.011
  • Li X, Liu X, Deng R, et al. Betulinic acid attenuated bleomycin-induced pulmonary fibrosis by effectively intervening Wnt/beta-catenin signaling. Phytomedicine. 2021;81:153428. doi:10.1016/j.phymed.2020.153428
  • Huimin D, Hui C, Guowei S, Shouyun X, Junyang P, Juncheng W. Protective effect of betulinic acid on Freund’s complete adjuvant-induced arthritis in rats. J Biochem Mol Toxicol. 2019;33(9):e22373. doi:10.1002/jbt.22373
  • Ghanadian M, Ali Z, Khan IA, et al. A new sesquiterpenoid from the shoots of Iranian Daphne mucronata Royle with selective inhibition of STAT3 and Smad3/4 cancer-related signaling pathways. Daru. 2020;28(1):253–262. doi:10.1007/s40199-020-00336-x
  • Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszen M. Betulin and betulinic acid attenuate ethanol-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS), cytokine (TNF-alpha, TGF-beta) production and by influencing intracellular signaling. Toxicology. 2011;280(3):152–163. doi:10.1016/j.tox.2010.12.006
  • Nader MA, Baraka HN. Effect of betulinic acid on neutrophil recruitment and inflammatory mediator expression in lipopolysaccharide-induced lung inflammation in rats. Eur J Pharm Sci. 2012;46(1–2):106–113. doi:10.1016/j.ejps.2012.02.015
  • Peng J, Lv YC, He PP, et al. Betulinic acid downregulates expression of oxidative stress-induced lipoprotein lipase via the PKC/ERK/c-Fos pathway in RAW264.7 macrophages. Biochimie. 2015;119:192–203. doi:10.1016/j.biochi.2015.10.020
  • Jiao L, Wang S, Zheng Y, et al. Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-kappaB/c-Myc pathway. Biochem Pharmacol. 2019;161:149–162. doi:10.1016/j.bcp.2019.01.016
  • Zhou Z, Choi JW, Shin JY, et al. Betulinic acid ameliorates the severity of acute pancreatitis via inhibition of the NF-kappaB signaling pathway in mice. Int J Mol Sci. 2021;22(13). doi:10.3390/ijms22136871
  • Shen M, Hu Y, Yang Y, et al. Betulinic acid induces ROS-dependent apoptosis and S-phase arrest by inhibiting the NF-kappaB pathway in human multiple myeloma. Oxid Med Cell Longev. 2019;2019:5083158. doi:10.1155/2019/5083158
  • Mohsen GA, Abu-Taweel GM, Rajagopal R, et al. Betulinic acid lowers lipid accumulation in adipocytes through enhanced NCoA1-PPARgamma interaction. J Infect Public Health. 2019;12(5):726–732. doi:10.1016/j.jiph.2019.05.011
  • Sandeep MRC, Chanotiya CS, Mukhopadhyay P, Ghosh S. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. New Phytol. 2019;222(1):408–424. doi:10.1111/nph.15606
  • Maczynska J, Choromanska A, Kutkowska J, et al. Effect of electrochemotherapy with betulinic acid or cisplatin on regulation of heat shock proteins in metastatic human carcinoma cells in vitro. Oncol Rep. 2019;41(6):3444–3454. doi:10.3892/or.2019.7103
  • Chen C, Liu X, Li L, et al. Protective effect of Inonotus obliquus polysaccharides on kidneys of diabetic kidney disease mice. Sci Technol Food Ind. 2021;42(2):321–325.
  • Lu X, Chen H, Dong P, Fu L, Zhang X. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. J Sci Food Agric. 2010;90(2):276–280. doi:10.1002/jsfa.3809
  • Lee JH, Hyun CK. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus. Phytother Res. 2014;28(9):1320–1328. doi:10.1002/ptr.5131
  • Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592–607. doi:10.1016/j.tips.2017.04.005
  • Türkeş C, Demir Y, Beydemir Ş. Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I. J Biomol Struct Dyn. 2022;40(1):77–85. doi:10.1080/07391102.2020.1806927
  • Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–222. doi:10.1038/s41581-019-0234-4
  • Wang Y, Ouyang F, Teng C, Qu J. Optimization for the extraction of polyphenols from Inonotus obliquus and its antioxidation activity. Prep Biochem Biotechnol. 2021;51(9):852–859. doi:10.1080/10826068.2020.1864642
  • Ying YM, Yu HF, Tong CP, Shan WG, Zhan ZJ. Spiroinonotsuoxotriols A and B, two highly rearranged triterpenoids from Inonotus obliquus. Org Lett. 2020;22(9):3377–3380. doi:10.1021/acs.orglett.0c00866
  • He P, Zhang Y, Li N. The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus: a review. Food Funct. 2021;12(5):1856–1881. doi:10.1039/d0fo02342f
  • Tian L, Wang Y, Qing J, et al. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. Open Chem. 2022;20(1):651–665. doi:10.1515/chem-2022-0168
  • Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct. 2021;12(2):494–518. doi:10.1039/d0fo01896a
  • Chen H, Yan M, Zhu J, Xu X. Enhancement of exo-polysaccharide production and antioxidant activity in submerged cultures of Inonotus obliquus by lignocellulose decomposition. J Ind Microbiol Biotechnol. 2011;38(2):291–298. doi:10.1007/s10295-010-0772-z
  • Sun JE, Ao ZH, Lu ZM, et al. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol. 2008;118(1):7–13. doi:10.1016/j.jep.2008.02.030
  • Wang J, Wang C, Li S, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother. 2017;95:1669–1677. doi:10.1016/j.biopha.2017.09.104
  • Zhang Z, Liang X, Tong L, et al. Effect of Inonotus obliquus (Fr.) Pilat extract on the regulation of glycolipid metabolism via PI3K/Akt and AMPK/ACC pathways in mice. J Ethnopharmacol. 2021;273:113963. doi:10.1016/j.jep.2021.113963
  • Xu T, Li G, Wang X, Lv C, Tian Y. Inonotus obliquus polysaccharide ameliorates serum profiling in STZ-induced diabetic mice model. BMC Chem. 2021;15(1):64. doi:10.1186/s13065-021-00789-4
  • Wang J, Hu W, Li L, et al. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One. 2017;12(6):e0180476. doi:10.1371/journal.pone.0180476
  • Sharma A, Thakur R, Lingaraju MC, et al. Betulinic acid attenuates renal fibrosis in rat chronic kidney disease model. Biomed Pharmacother. 2017;89:796–804. doi:10.1016/j.biopha.2017.01.181
  • Liu CM, Qi XL, Yang YF, Zhang XD. Betulinic acid inhibits cell proliferation and fibronectin accumulation in rat glomerular mesangial cells cultured under high glucose condition. Biomed Pharmacother. 2016;80:338–342. doi:10.1016/j.biopha.2016.02.040
  • Liu C, Zhao S, Zhu C, et al. Ergosterol ameliorates renal inflammatory responses in mice model of diabetic nephropathy. Biomed Pharmacother. 2020;128:110252. doi:10.1016/j.biopha.2020.110252
  • Fakhruddin S, Alanazi W, Jackson KE. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res. 2017;2017:8379327. doi:10.1155/2017/8379327
  • Palabıyık E, Sulumer AN, Uguz H, et al. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recog. 2023;36(3):e3004. doi:10.1002/jmr.3004
  • Zhang Y, Liao H, Shen D, et al. Renal protective effects of Inonotus obliquus on high-fat diet/streptozotocin-induced diabetic kidney disease rats: biochemical, color Doppler ultrasound and histopathological evidence. Front Pharmacol. 2022;12:743931. doi:10.3389/fphar.2021.743931
  • Xie R, Zhang H, Wang XZ, et al. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats. Food Funct. 2017;8(1):299–306. doi:10.1039/c6fo01601d
  • Ma Q, Santhanam RK, Xue Z, Guo Q, Gao X, Chen H. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int J Biol Macromol. 2018;119:1137–1143. doi:10.1016/j.ijbiomac.2018.08.023
  • Xu L, Yu Y, Sang R, et al. Inonotus obliquus polysaccharide protects against adverse pregnancy caused by Toxoplasma gondii infection through regulating Th17/Treg balance via TLR4/NF-kappaB pathway. Int J Biol Macromol. 2020;146:832–840. doi:10.1016/j.ijbiomac.2019.10.051
  • Gao P, Meng XF, Su H, et al. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. Biochim Biophys Acta. 2014;1843(11):2448–2460. doi:10.1016/j.bbamcr.2014.07.001
  • Zhao M, Bai M, Ding G, et al. Angiotensin II stimulates the NLRP3 inflammasome to induce podocyte injury and mitochondrial dysfunction. Kidney Dis. 2018;4(2):83–94. doi:10.1159/000488242
  • Li J, Qu C, Li F, et al. Inonotus obliquus polysaccharide ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated cancer in mice via activation of the NLRP3 inflammasome. Front Pharmacol. 2020;11:621835. doi:10.3389/fphar.2020.621835
  • Shen J, Dai Z, Li Y, Zhu H, Zhao L. TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy. Diabetol Metab Syndr. 2022;14(1):26. doi:10.1186/s13098-021-00780-y