250
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis

ORCID Icon, ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 1021-1037 | Received 24 Sep 2023, Accepted 23 Jan 2024, Published online: 12 Feb 2024

References

  • Shpak AA, Guekht AB, Druzhkova TA, Troshina AA, Gulyaeva NV. Glial cell line-derived neurotrophic factor (GDNF) in patients with primary open-angle glaucoma and age-related cataract. Mol Vis. 2022;28:39–47.
  • Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510. doi:10.1016/j.mcna.2021.01.004
  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013
  • He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther. 2018;34(1–2):85–106. doi:10.1089/jop.2017.0041
  • Kuo CY, Liu CJL. Neuroprotection in Glaucoma: basic Aspects and Clinical Relevance. J Personalized Me. 2022;12(11):1884. doi:10.3390/jpm12111884
  • Vidal-Villegas B, Burgos-Blasco B, Santiago Alvarez JL, et al. Proinflammatory Cytokine Profile Differences between Primary Open-Angle and Pseudoexfoliative Glaucoma. Ophthalmic Res. 2021;65(1):111–120. doi:10.1159/000519816
  • Abu-Amero KK, Kondkar AA, Mousa A, Osman EA, Al-Obeidan SA. Decreased total antioxidants status in the plasma of patients with pseudoexfoliation glaucoma. Mol Vis. 2011;17:2769–2775.
  • Aslan M, Cort A, Yucel I. Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med. 2008;45(4):367–376. doi:10.1016/j.freeradbiomed.2008.04.026
  • Khalef N, Labib H, Helmy H, El Hamid MA, Moemen L, Fahmy I. Levels of cytokines in the aqueous humor of eyes with primary open angle glaucoma, pseudoexfoliation glaucoma and cataract. Electron Physician. 2017;9(2):3833–3837. doi:10.19082/3833
  • Chono I, Miyazaki D, Miyake H, et al. High interleukin-8 level in aqueous humor is associated with poor prognosis in eyes with open angle glaucoma and neovascular glaucoma. Sci Rep. 2018;8(1):14533. doi:10.1038/s41598-018-32725-3
  • Yin Z, Gao Y, Tang Y, Tian X, Zheng Y, Han Q. Aqueous humor cytokine levels are associated with the severity of visual field defects in patients with primary open-angle glaucoma. BMC Ophthalmology. 2023;23(1):141. doi:10.1186/s12886-023-02875-8
  • Schuettauf F, Vorwerk C, Naskar R, et al. Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr Eye Res. 2004;29(6):379–386. doi:10.1080/02713680490517872
  • Lambiase A, Aloe L, Centofanti M, et al. Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc Natl Acad Sci U S A. 2009;106(32):13469–13474. doi:10.1073/pnas.0906678106
  • Ji JZ, Elyaman W, Yip HK, et al. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci. 2004;19(2):265–272. doi:10.1111/j.0953-816x.2003.03107.x
  • Koeberle PD, Ball AK. Neurturin enhances the survival of axotomized retinal ganglion cells in vivo: combined effects with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Neuroscience. 2002;110(3):555–567. doi:10.1016/s0306-4522(01)00557-7
  • Chlabicz M, Jamiołkowski J, Łaguna W, et al. A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: a Population-Based Study. J Clin Med. 2021;10(8):1584. doi:10.3390/jcm10081584
  • Spaeth GL. European glaucoma society terminology and guidelines for glaucoma. Br J Ophthalmol. 2021;105(Suppl 1):1–169. doi:10.1136/bjophthalmol-2021-egsguidelines
  • Cheng KKW, Tatham AJ. Spotlight on the Disc-Damage Likelihood Scale (DDLS). Clin Ophthalmol. 2021;15:4059–4071. doi:10.2147/OPTH.S284618
  • Bochmann F, Howell JP, Meier C, Becht C, Thiel MA. The disc damage likelihood scale (DDLS): interobserver agreement of a new grading system to assess glaucomatous optic disc damage. Klin Monbl Augenheilkd. 2009;226(4):280–283. doi:10.1055/s-0028-1109288
  • Susanna R, Vessani RM. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr Opin Ophthalmol. 2007;18(2):122–128. doi:10.1097/ICU.0b013e328040bfe0
  • Fingeret M, Medeiros FA, Susanna R, Weinreb RN. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry. 2005;76(11):661–668. doi:10.1016/j.optm.2005.08.029
  • R Core Team. R: a language and environment for statistical computing. 2022. Available from: https://www.R-project.org/. Accessed February 6, 2024.
  • American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: standards of Medical Care in Diabetes—2022. Diabetes Care. 2021;45(Supplement_1):S17–S38. doi:10.2337/dc22-S002
  • Li S, Cao W, Han J, Tang B, Sun X. The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma. Oncotarget. 2017;8(40):68984–68995. doi:10.18632/oncotarget.16571
  • Ozgonul C, Sertoglu E, Mumcuoglu T, Kucukevcilioglu M. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Novel Biomarkers of Primary Open-Angle Glaucoma. J Glaucoma. 2016;25(10):e815–e820. doi:10.1097/IJG.0000000000000392
  • Zhang A, Ning L, Han J, et al. Neutrophil-To-Lymphocyte Ratio as a Potential Biomarker of Neovascular Glaucoma. Ocul Immunol Inflamm. 2021;29(2):417–424. doi:10.1080/09273948.2019.1677916
  • Atalay K, Kaldirim Erdogan H, Kirgiz A, Asik Nacaroglu S. Predictive role of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in normal-tension glaucoma. Med Hypotheses. 2017;103:54–56. doi:10.1016/j.mehy.2017.04.001
  • Kurtul BE, Ozer PA, Kabatas EU. Elevated neutrophil-to-lymphocyte ratio in pseudoexfoliation syndrome. Eye (Lond). 2016;30(8):1045–1048. doi:10.1038/eye.2016.89
  • Zhao YX, Chen XW. Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective cohort studies. Int J Ophthalmol. 2017;10(9):1430–1435. doi:10.18240/ijo.2017.09.16
  • Nakamura M, Kanamori A, Negi A. Diabetes mellitus as a Risk Factor for Glaucomatous Optic Neuropathy. Ophthalmologica. 2005;219(1):1–10. doi:10.1159/000081775
  • Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes. 2015;6(1):92–108. doi:10.4239/wjd.v6.i1.92
  • Lee JS, Kim YJ, Kim S, et al. Increased Risks of Open-Angle Glaucoma in Untreated Hypertension. Am J Ophthalmol. 2023;252:111–120. doi:10.1016/j.ajo.2023.03.032
  • Nislawati R, Taufik Fadillah Zainal A, Ismail A, Waspodo N, Kasim F, Gunawan AMAK. Role of hypertension as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. BMJ Open Ophth. 2021;6(1):e000798. doi:10.1136/bmjophth-2021-000798
  • Graßhoff H, Comdühr S, Monne LR, et al. Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Front Immunol. 2021:12. doi:10.3389/fimmu.2021.648408
  • Witkowska AM. On the Role of sIL-2R Measurements in Rheumatoid Arthritis and Cancers. Mediators of Inflammation Nan/Nan/Nan. 2005;121–130. doi:10.1155/MI.2005.121
  • LaPorte KM, Hernandez R, Savio AS, Malek TR. Robust IL-2-dependent antitumor immunotherapy requires targeting the high-affinity IL-2R on tumor-specific CD8+ T cells. J Immunother Cancer. 2023;11(6):e006611. doi:10.1136/jitc-2022-006611
  • Liang G, Li J, Pu S, He Z. Screening of Sepsis Biomarkers Based on Bioinformatics Data Analysis. J Healthcare Engineering. 2022;2022:e6788569. doi:10.1155/2022/6788569
  • Lu J, Li Q, Wu Z, et al. Two gene set variation indexes as potential diagnostic tool for sepsis. Am J Transl Res. 2020;12(6):2749.
  • Lou W, Yan J, Wang W. Downregulation of miR-497-5p Improves Sepsis-Induced Acute Lung Injury by Targeting IL2RB. Biomed Res Int. 2021;2021:6624702. doi:10.1155/2021/6624702
  • Yang Y, Zhang Y, Li S, et al. A Robust and Generalizable Immune-Related Signature for Sepsis Diagnostics. IEEE/ACM Trans Comput Biol Bioinform. 2022;19(6):3246–3254. doi:10.1109/TCBB.2021.3107874
  • Zhou J, Zhang Y, Zhuang Q. IL2RB affects Th1/Th2 and Th17 responses of peripheral blood mononuclear cells from septic patients. Allergologia et Immunopathologia. 2023;51(3):1–7. doi:10.15586/aei.v51i3.757
  • Ghosh SP, Yu Z, Kelegere Y, et al. Evidence for IL-2 signaling in corneal epithelium. Invest Ophthalmol Visual Sci. 2022;63(7).
  • Barak V, Kalickman I, Pe’er J. sIL-2R- an Immuno-biomarker for Prediction of Metastases in Uveal Melanoma. Anticancer Res. 2022;42(3):1447–1453. doi:10.21873/anticanres.15615
  • Cénit MC, Márquez A, Cordero-Coma M, et al. Evaluation of the IL2/IL21, IL2RA and IL2RB genetic variants influence on the endogenous non-anterior uveitis genetic predisposition. BMC Med. Genet. 2013;14(1):52. doi:10.1186/1471-2350-14-52
  • Suzuki K, Namba K, Mizuuchi K, et al. Validation of systemic parameters for the diagnosis of ocular sarcoidosis. Jpn J Ophthalmol. 2021;65(2):191–198. doi:10.1007/s10384-020-00793-6
  • Gundlach E, Hoffmann MM, Prasse A, Heinzelmann S, Ness T. Interleukin-2 Receptor and Angiotensin-Converting Enzyme as Markers for Ocular Sarcoidosis. PLoS One. 2016;11(1):e0147258. doi:10.1371/journal.pone.0147258
  • Alende-Castro V, Alonso-Sampedro M, Fernández-Merino C, et al. Factors influencing serum concentrations of soluble interleukin-2 receptor: a general adult population study. All Life. 2023;16(1):2169958. doi:10.1080/26895293.2023.2169958
  • Cai B, Zhang J, Zhang M, et al. Micro-inflammation characterized by disturbed Treg/Teff balance with increasing sIL-2R in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013;121(4):214–219. doi:10.1055/s-0033-1333687
  • Zhou Y, Zhang Y, Zhao M, Li Q, Li H. sIL-2R levels predict the spontaneous remission in sarcoidosis. Respir Med. 2020;171. doi:10.1016/j.rmed.2020.106115
  • Vorselaars ADM, van CHM, Zanen P, et al. ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy. Respir Med. 2015;109(2):279–285. doi:10.1016/j.rmed.2014.11.009
  • Gupta S, Parmar M, Padappayil RP, Bansal A, Daouk S. Role of Serum Soluble Interleukin-2 Receptor Level in the Diagnosis of Sarcoidosis: a Systematic Review and Meta-Analysis. Int J Med. 2022;22277713. doi:10.1101/2022.07.16.22277713
  • Schimmelpennink M, Quanjel M, Vorselaars A, et al. Value of serum soluble interleukin-2 receptor as a diagnostic and predictive biomarker in sarcoidosis. Expert Rev Respir Med. 2020;14(7):749–756. doi:10.1080/17476348.2020.1751614
  • Kobayashi Y, Sato T, Nagai T, et al. Association of high serum soluble interleukin 2 receptor levels with risk of adverse events in cardiac sarcoidosis. ESC Heart Failure. 2021;8(6):5282–5292. doi:10.1002/ehf2.13614
  • Al-Hakeim HK, Al-Rammahi DA, Al-Dujaili AH. IL-6, IL-18, sIL-2R, and TNFα proinflammatory markers in depression and schizophrenia patients who are free of overt inflammation. J Affective Disorders. 2015;182:106–114. doi:10.1016/j.jad.2015.04.044
  • Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5083 controls. Brain Behav Immun. 2020;87:901–909. doi:10.1016/j.bbi.2020.02.010
  • Maes M, Carvalho AF. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol Neurobiol. 2018;55(12):8885–8903. doi:10.1007/s12035-018-1016-x
  • Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O. Non-Motor Symptoms in Patients with Parkinson’s Disease – correlations with Inflammatory Cytokines in Serum. PLoS One. 2012;7(10):e47387. doi:10.1371/journal.pone.0047387
  • Ramanzini LG, Camargo LFM, Silveira JOF, Bochi GV. Inflammatory markers and depression in Parkinson’s disease: a systematic review. Neurol Sci. 2022;43(12):6707–6717. doi:10.1007/s10072-022-06363-7
  • Nies YH, Yahaya MF, Lim WL, Teoh SL. Microarray-based analysis of differential gene expression profile in rotenone-induced Parkinson’s disease zebrafish model. CNS Neurol Disord Drug Targets. 2023. doi:10.2174/1871527322666230608122552
  • Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–1221. doi:10.1056/NEJMoa0906312
  • Brunner PM, Suárez-Fariñas M, He H, et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci Rep. 2017;7(1):8707. doi:10.1038/s41598-017-09207-z
  • Sun H, Liu C, Zhang X, et al. Using bioinformatics analysis to screen abnormal methylated differentially expressed hub genes of Kawasaki disease and construct diagnostic model. Heliyon. 2022;8(11):e11905. doi:10.1016/j.heliyon.2022.e11905
  • Liao Y, Ke B, Long X, Xu J, Wu Y. Upregulated Expression of IL2RB Causes Disorder of Immune Microenvironment in Patients with Kawasaki Disease. Biomed Res. Int. 2022;2022:e2114699. doi:10.1155/2022/2114699
  • Hinks A, Cobb J, Marion MC, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45(6):664–669. doi:10.1038/ng.2614
  • Zheng Y, Cai B, Ren C, et al. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ. 2021;9:e12125. doi:10.7717/peerj.12125
  • Akiyama M, Sasaki T, Kaneko Y, et al. Serum soluble interleukin-2 receptor is a useful biomarker for disease activity but not for differential diagnosis in IgG4-related disease and primary Sjögren’s syndrome adults from a defined population. Clin Exp Rheumatol. 2018;36 Suppl 112(3):157–164.
  • Keindl M, Davies R, Bergum B, et al. Impaired activation of STAT5 upon IL-2 stimulation in Tregs and elevated sIL-2R in Sjögren’s syndrome. Arthritis Res Therapy. 2022;24(1):101. doi:10.1186/s13075-022-02769-y
  • Hamamoto K, Inaba M, Yamada S, et al. Increased soluble IL-2 receptor levels in serum from a patient with painless thyroiditis. Thyroid Research. 2013;6(1):12. doi:10.1186/1756-6614-6-12
  • Bouzid D, Amouri A, Fourati H, et al. Polymorphisms in the IL2RA and IL2RB Genes in Inflammatory Bowel Disease Risk. Genetic Testing and Molecular Biomarkers. 2013;17(11):833–839. doi:10.1089/gtmb.2013.0291
  • Pan Y, Zhang J, Li J, Zhao W. Identification and Validation of Immune Markers in Coronary Heart Disease. Comput Math Methods Med. 2022;2022:2877679. doi:10.1155/2022/2877679
  • Goncharova IA, Bragina E, Zhalsanova I, Freidin MB, Nazarenko MS. Putative regulatory functions of SNPs associated with bronchial asthma, arterial hypertension and their comorbid phenotype. Vavilovskii Zhurnal Genet Selektsii. 2021;25(8):855–863. doi:10.18699/VJ21.099
  • Yang J, Patil RV, Yu H, Gordon M, Wax MB. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol. 2001;131(4):421–426. doi:10.1016/S0002-9394(00)00862-X
  • Huang P, Qi Y, Xu YS, et al. Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma. J Glaucoma. 2010;19(5):324–330. doi:10.1097/IJG.0b013e3181b4cac7
  • Fernandez IZ, Baxter RM, Garcia-Perez JE, et al. A novel human IL2RB mutation results in T and NK cell–driven immune dysregulation. J Exp Med. 2019;216(6):1255–1267. doi:10.1084/jem.20182015
  • Ji YW, Mittal SK, Hwang HS, et al. Lacrimal gland–derived IL-22 regulates IL-17-mediated ocular mucosal inflammation. Mucosal Immunol. 2017;10(5):1202–1210. doi:10.1038/mi.2016.119
  • Keller KE. Analysis of interleukin-20 receptor complexes in trabecular meshwork cells and effects of cytokine signaling in anterior segment perfusion culture. Mol Vis. 2019;25:266–282.
  • Mossner S, Kuchner M, Fazel Modares N, et al. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem. 2020;295(35):12378–12397. doi:10.1074/jbc.RA120.013927
  • Lécart S, Morel F, Noraz N, et al. IL‐22, in contrast to IL‐10, does not induce Ig production, due to absence of a functional IL‐22 receptor on activated human B cells. Int Immunol. 2002;14(11):1351–1356. doi:10.1093/intimm/dxf096
  • Mallela LS, Sharma P, Rao TSR, Roy S. Recombinant IL-22 promotes protection in a murine model of Aspergillus flavus keratitis and mediates host immune responses in human corneal epithelial cells. Cellular Microbiology. 2021;23(9):e13367. doi:10.1111/cmi.13367
  • Kong X, Feng D, Mathews S, Gao B. Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J Gastroenterol Hepatol. 2013;28(S1):56–60. doi:10.1111/jgh.12032
  • Mitra A, Raychaudhuri SK, Raychaudhuri SP. Functional role of IL-22 in psoriatic arthritis. Arthritis Res Therapy. 2012;14(2):R65. doi:10.1186/ar3781
  • Lifshiz Zimon R, Lerman G, Elharrar E, et al. Ultrasound targeting of Q-starch/miR-197 complexes for topical treatment of psoriasis. J Control Release. 2018;284:103–111. doi:10.1016/j.jconrel.2018.05.040
  • Desmet E, Van Gele M, Grine L, Remaut K, Lambert J. Towards the development of a RNAi-based topical treatment for psoriasis: proof-of-concept in a 3D psoriasis skin model. Exp Dermatol. 2018;27(5):463–469. doi:10.1111/exd.13414
  • Zhang S, Yang G. IL22RA1/JAK/STAT Signaling Acts As a Cancer Target Through Pan-Cancer Analysis. Front Immunol. 2022;13:915246. doi:10.3389/fimmu.2022.915246
  • Dinarte VRP, Silva WA, Baccarin ARD, Tamashiro E, Valera FC, Anselmo-Lima WT. Association of interleukin 22 receptor subunit alpha 1 gene polymorphisms with chronic rhinosinusitis. Br J Otorhinolaryngol. 2021;87(5):505–511. doi:10.1016/j.bjorl.2019.10.006
  • Endam LM, Bossé Y, Filali-Mouhim A, et al. Polymorphisms in the interleukin-22 receptor alpha-1 gene are associated with severe chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2009;140(5):741–747. doi:10.1016/j.otohns.2008.12.058
  • Mattapallil MJ, Kielczewski JL, Zárate-Bladés CR, et al. Interleukin 22 ameliorates neuropathology and protects from central nervous system autoimmunity. J Autoimmun. 2019;102:65–76. doi:10.1016/j.jaut.2019.04.017
  • Lindborg JA, Tran NM, Chenette DM, et al. Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Cell Rep. 2021;34(9):108777. doi:10.1016/j.celrep.2021.108777
  • Li J, Liu W, Wang Y, et al. Salidroside Inhibits Ganglion Cell Apoptosis by Suppressing the Müller Cell Inflammatory Response in Diabetic Retinopathy. Curr Eye Res. 2023;1(2):1–12. doi:10.1080/02713683.2023.2204208
  • Wang Y, Yu H, Li J, et al. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res. 2022;390(3):367–383. doi:10.1007/s00441-022-03689-8
  • Zhao Y, Zhang F, Pan Z, Luo H, Liu K, Duan X. LncRNA NR_003923 promotes cell proliferation, migration, fibrosis, and autophagy via the miR-760/miR-215-3p/IL22RA1 axis in human Tenon’s capsule fibroblasts. Cell Death Dis. 2019;10(8):1–13. doi:10.1038/s41419-019-1829-1
  • Yu S, Tam ALC, Campbell R, Renwick N. Emerging Evidence of Noncoding RNAs in Bleb Scarring after Glaucoma Filtration Surgery. Cells. 2022;11(8):1301. doi:10.3390/cells11081301
  • Sonar S, Lal G. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front Immunol. 2015; 6. doi:10.3389/fimmu.2015.00364
  • Xu WD, Zhao Y, Liu Y. Role of the TWEAK/Fn14 pathway in autoimmune diseases. Immunol Res. 2016;64(1):44–50. doi:10.1007/s12026-015-8761-y
  • Vendrell J. TWEAK: a New Player in Obesity and Diabetes. Front Immunol. 2013;4:88. doi:10.3389/fimmu.2013.00488
  • Cheadle L, Tzeng CP, Kalish BT, et al. Visual Experience-Dependent Expression of Fn14 Is Required for Retinogeniculate Refinement. Neuron. 2018;99(3):525–539.e10. doi:10.1016/j.neuron.2018.06.036
  • Cheadle L, Rivera SA, Phelps JS, et al. Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron. 2020;108(3):451–468.e9. doi:10.1016/j.neuron.2020.08.002
  • Ebihara N, Nakayama M, Tokura T, Iwatsu M, Ushio H, Murakami A. Proinflammatory Effect of TWEAK/Fn14 Interaction in Human Retinal Pigment Epithelial Cells. Curr Eye Res. 2009;34(10):836–844. doi:10.3109/02713680903122037
  • Ameri H, Liu H, Liu R, et al. TWEAK/Fn14 Pathway Is a Novel Mediator of Retinal Neovascularization. Invest Ophthalmol Vis Sci. 2014;55(2):801. doi:10.1167/iovs.13-12812
  • El-Asrar AM A, De Hertogh G, Nawaz MI, et al. The Tumor Necrosis Factor Superfamily Members TWEAK, TNFSF15 and Fibroblast Growth Factor-Inducible Protein 14 Are Upregulated in Proliferative Diabetic Retinopathy. Ophthalmic Res. 2015;53(3):122–130. doi:10.1159/000369300
  • Maarouf A, Stephan D, Ranjeva MP, et al. High levels of serum soluble TWEAK are associated with neuroinflammation during multiple sclerosis. J Transl Med. 2019;17(1):51. doi:10.1186/s12967-019-1789-3
  • Karadag H, Saygili G, Yuksel R, Baris Usta M, Topcuoglu C, Erzin G. SERUM TNF- RELATED WEAK INDUCER OF APOPTOSIS (TWEAK), TNF- RELATED APOPTOSIS-INDUCING LIGAND (TRAIL) LEVELS IN PATIENTS WITH BIPOLAR DEPRESSION, MAJOR DEPRESSION AND A HEALTHY CONTROL GROUP. Psychiatria Danubina. 2021;33(br 3):314–319. doi:10.24869/psyd.2021.314
  • Schmidt FM, Koch J, Nowak C, et al. Ligands and receptors of the TNF superfamily are decreased in major depression and during early antidepressant therapy. J Psychiatr Res. 2019;119:116–121. doi:10.1016/j.jpsychires.2019.09.010
  • Melin EO, Dereke J, Hillman M. Low levels of soluble TWEAK, indicating on-going inflammation, were associated with depression in type 1 diabetes: a cross-sectional study. BMC Psychiatry. 2020;20(1):574. doi:10.1186/s12888-020-02977-3
  • Gubin D, Neroev V, Malishevskaya T, et al. Depression scores are associated with retinal ganglion cells loss. J Affect Disord. 2023;333:290–296. doi:10.1016/j.jad.2023.04.039
  • Wang R, Chen B, Wei H, et al. Collecting and deactivating TGF-β1 hydrogel for anti-scarring therapy in post-glaucoma filtration surgery. Mater Today Bio. 2022;14:100260. doi:10.1016/j.mtbio.2022.100260
  • Jelić-Ivanović Z, Bujišić N, Spasić S, Bogavac-Stanojević N, Spasojević-Kalimanovska V, Kotur-Stevuljević J. Circulating sTWEAK improves the prediction of coronary artery disease. Clin. Biochem. 2009;42(13):1381–1386. doi:10.1016/j.clinbiochem.2009.06.001
  • Urbonaviciene G, Martin-Ventura JL, Lindholt JS, et al. Impact of soluble TWEAK and CD163/TWEAK ratio on long-term cardiovascular mortality in patients with peripheral arterial disease. Atherosclerosis. 2011;219(2):892–899. doi:10.1016/j.atherosclerosis.2011.09.016
  • Fernández-Laso V, Sastre C, Valdivielso JM, et al. Soluble TWEAK levels predict the presence of carotid atherosclerotic plaques in subjects free from clinical cardiovascular diseases. Atherosclerosis. 2015;239(2):358–363. doi:10.1016/j.atherosclerosis.2015.01.040
  • Turkmen K, Tonbul HZ, Erdur FM, et al. Soluble TWEAK independently predicts atherosclerosis in renal transplant patients. BMC Nephrol. 2013;14(1):144. doi:10.1186/1471-2369-14-144
  • Perri P, Zauli G, Gonelli A, et al. TNF-Related Apoptosis Inducing Ligand in Ocular Cancers and Ocular Diabetic Complications. Biomed Res. Int. 2015;2015:e424019. doi:10.1155/2015/424019
  • Tisato V, Gonelli A, Voltan R, Secchiero P, Zauli G. Clinical perspectives of TRAIL: insights into central nervous system disorders. Cell Mol Life Sci. 2016;73(10):2017–2027. doi:10.1007/s00018-016-2164-7
  • Ikeda T, Hirata S, Fukushima S, et al. Dual Effects of TRAIL in Suppression of Autoimmunity: the Inhibition of Th1 Cells and the Promotion of Regulatory T Cells. J Immunol. 2010;185(9):5259–5267. doi:10.4049/jimmunol.0902797
  • Zhang XR, Zhang LY, Devadas S, Li L, Keegan AD, Shi YF. Reciprocal expression of TRAIL and CD95L in Th1 and Th2 cells: role of apoptosis in T helper subset differentiation. Cell Death Differ. 2003;10(2):203–210. doi:10.1038/sj.cdd.4401138
  • Guo C, Wu N, Niu X, Wu Y, Chen D, Guo W. Comparison of T Helper Cell Patterns in Primary Open-Angle Glaucoma and Normal-Pressure Glaucoma. Med Sci Monit. 2018;24:1988–1996. doi:10.12659/MSM.904923
  • Bell K, Holz A, Ludwig K, Pfeiffer N, Grus FH. Elevated Regulatory T Cell Levels in Glaucoma Patients in Comparison to Healthy Controls. Curr Eye Res. 2017;42(4):562–567. doi:10.1080/02713683.2016.1205629
  • Moreno M, Sáenz-Cuesta M, Castilló J, et al. Circulating levels of soluble apoptosis-related molecules in patients with multiple sclerosis. J Neuroimmunol. 2013;263(1):152–154. doi:10.1016/j.jneuroim.2013.07.013
  • Mori K, Ikari Y, Jono S, et al. Association of serum TRAIL level with coronary artery disease. Thrombosis Research. 2010;125(4):322–325. doi:10.1016/j.thromres.2009.11.024
  • Cheng W, Liu F, Wang Z, et al. Soluble TRAIL Concentration in Serum Is Elevated in People with Hypercholesterolemia. PLoS One. 2015;10(12):e0144015. doi:10.1371/journal.pone.0144015
  • Angelopoulou E, Paudel YN, Shaikh MF, Piperi C. Fractalkine (CX3CL1) signaling and neuroinflammation in Parkinson’s disease: potential clinical and therapeutic implications. Pharmacol Res. 2020;158:104930. doi:10.1016/j.phrs.2020.104930
  • Breen KT, Anderson SR, Steele MR, Calkins DJ, Bosco A, Vetter ML. Loss of Fractalkine Signaling Exacerbates Axon Transport Dysfunction in a Chronic Model of Glaucoma. Front Neurosci. 2016;10. doi:10.3389/fnins.2016.00526
  • Jiang M, Xie H, Zhang C, et al. Enhancing fractalkine/CX3CR1 signalling pathway can reduce neuroinflammation by attenuating microglia activation in experimental diabetic retinopathy. J Cell Mol Med. 2022;26(4):1229–1244. doi:10.1111/jcmm.17179
  • Chen G, Zhou Z, Sha W, et al. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med. 2020;45(5):1373–1384. doi:10.3892/ijmm.2020.4509
  • Begum G, Reddy R, Yakoub KM, Belli A, Davies DJ, Di Pietro V. Differential Expression of Circulating Inflammatory Proteins Following Sport-Related Traumatic Brain Injury. Int J Mol Sci. 2020;21(4):1216. doi:10.3390/ijms21041216
  • Liu C, Cui G, Zhu M, Kang X, Guo H. Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. Int J Clin Exp Pathol. 2014;7(12):8342–8355.
  • Wakefield D, Wildner G. Is glaucoma an autoimmune disease? Clin Transl Immunology. 2020;9(10):e1180. doi:10.1002/cti2.1180
  • Voisinne G, Gonzalez de Peredo A, Roncagalli R. CD5, an Undercover Regulator of TCR Signaling. Front Immunol. 2018;9:2900. doi:10.3389/fimmu.2018.02900
  • Calvo J, Places L, Espinosa G, et al. Identification of a natural soluble form of human CD5: circulating CD5. Tissue Antigens. 1999;54(2):128–137. doi:10.1034/j.1399-0039.1999.540203.x
  • Ramos-Casals M, Font J, García-Carrasco M, et al. High circulating levels of soluble scavenger receptors (sCD5 and sCD6) in patients with primary Sjögren’s syndrome. Rheumatology. 2001;40(9):1056–1059. doi:10.1093/rheumatology/40.9.1056
  • Aibar J, Martínez-Florensa M, Castro P, et al. Pattern of soluble CD5 and CD6 lymphocyte receptors in critically ill patients with septic syndromes. J Crit Care. 2015;30(5):914–919. doi:10.1016/j.jcrc.2015.04.120
  • Jamin C, Magadur G, Lamour A, et al. Cell-free CD5 in patients with rheumatic diseases. Immunol Lett. 1992;31(1):79–83. doi:10.1016/0165-2478(92)90014-f
  • Noh GW, Lee KY. Circulating soluble CD5 in atopic dermatitis. Mol Cells. 1998;8(5):618–622.
  • Andrés M V-D, Casadó-Llombart S, Català C, Leyton-Pereira A, Lozano F, Aranda F. Soluble CD5 and CD6: lymphocytic Class I Scavenger Receptors as Immunotherapeutic Agents. Cells. 2020;9(12):2589. doi:10.3390/cells9122589
  • Stolfi C, Troncone E, Marafini I, Monteleone G. Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules. 2021;11(1):17. doi:10.3390/biom11010017
  • Roodnat AW, Callaghan B, Doyle C, et al. Genome-Wide RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-β1: relevance to Pseudoexfoliation Glaucoma. Biomolecules. 2022;12(11):1693. doi:10.3390/biom12111693
  • Estrada LD, Oliveira-Cruz L, Cabrera D. Transforming Growth Factor Beta Type I Role in Neurodegeneration: implications for Alzheimer´s Disease. Curr Protein Pept Sci. 2014;19(12):1180–1188.
  • Jorgensen MM, de la Puente P. Leukemia Inhibitory Factor: an Important Cytokine in Pathologies and Cancer. Biomolecules. 2022;12(2):217. doi:10.3390/biom12020217
  • Hui W, Bell M, Carroll G. SOLUBLE GLYCOPROTEIN 130 (gp130) ATTENUATES OSM- AND LIF-INDUCED CARTILAGE PROTEOGLYCAN CATABOLISM. Cytokine. 2000;12(2):151–155. doi:10.1006/cyto.1999.0550
  • Chollangi S, Wang J, Martin A, Quinn J, Ash JD. Preconditioning-induced protection from oxidative injury is mediated by leukemia inhibitory factor receptor (LIFR) and its ligands in the retina. Neurobiol Dis. 2009;34(3):535–544. doi:10.1016/j.nbd.2009.03.012
  • Yang JY, Lu B, Feng Q, et al. Retinal Protection by Sustained Nanoparticle Delivery of Oncostatin M and Ciliary Neurotrophic Factor Into Rodent Models of Retinal Degeneration. Trans Vision Sci Technol. 2021;10(9):6. doi:10.1167/tvst.10.9.6
  • Hu Q, Huang C, Wang Y, Wu R. Expression of leukemia inhibitory factor in the rat retina following acute ocular hypertension. Molecular Medicine Reports. 2015;12(5):6577–6583. doi:10.3892/mmr.2015.4287
  • Benito-Gutiérrez E, Garcia-Fernàndez J, Comella JX. Origin and evolution of the Trk family of neurotrophic receptors. Mol Cell Neurosci. 2006;31(2):179–192. doi:10.1016/j.mcn.2005.09.007
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi:10.1126/science.1260419
  • Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: cold Hard Evidence and Caveats. Int J Mol Sci. 2019;20(17):4314. doi:10.3390/ijms20174314
  • Gupta A, Galletti JG, Yu Z, Burgess K, de Paiva CS AB. C’s of Trk Receptors and Their Ligands in Ocular Repair. Int J Mol Sci. 2022;23(22):14069. doi:10.3390/ijms232214069
  • Nikoletopoulou V, Lickert H, Frade JM, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467(7311):59–63. doi:10.1038/nature09336
  • Karlsson M, Zhang C, Méar L, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021;7(31):eabh2169. doi:10.1126/sciadv.abh2169
  • Lukowski SW, Lo CY, Sharov AA, et al. A single-cell transcriptome atlas of the adult human retina. EMBO J. 2019;38(18):e100811. doi:10.15252/embj.2018100811
  • Cui Q, Tang LS, Hu B, So KF, Yip HK. Expression of trkA, trkB, and trkC in Injured and Regenerating Retinal Ganglion Cells of Adult Rats. Invest Ophthalmol Visual Sci. 2002;43(6):1954–1964.
  • Guo Y, Johnson E, Cepurna W, Jia L, Dyck J, Morrison JC. Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma? Exp Eye Res. 2009;89(6):921–933. doi:10.1016/j.exer.2009.08.003
  • Ogłodek EA, Just MJ, Szromek AR, Araszkiewicz A. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. 2016;68(5):945–951. doi:10.1016/j.pharep.2016.04.003
  • Karan D. CCL23 in Balancing the Act of Endoplasmic Reticulum Stress and Antitumor Immunity in Hepatocellular Carcinoma. Front Oncol. 2021;11. doi:10.3389/fonc.2021.727583
  • Castillo L, Rohatgi A, Ayers CR, et al. Associations of Four Circulating Chemokines with Multiple Atherosclerosis Phenotypes in a Large Population-Based Sample: results from the Dallas Heart Study. J Interferon Cytokine Res. 2010;30(5):339–347. doi:10.1089/jir.2009.0045
  • Faura J, Bustamante A, Penalba A, et al. CCL23: a Chemokine Associated with Progression from Mild Cognitive Impairment to Alzheimer’s Disease. J Alzheimers Dis. 2020;73(4):1585–1595. doi:10.3233/JAD-190753
  • Spaeth GL, Lopes JF, Junk AK, Grigorian AP, Henderer J. Systems for staging the amount of optic nerve damage in glaucoma: a critical review and new material. Surv Ophthalmol. 2006;51(4):293–315. doi:10.1016/j.survophthal.2006.04.008
  • Bayer A, Harasymowycz P, Henderer JD, Steinmann WG, Spaeth GL. Validity of a new disk grading scale for estimating glaucomatous damage: correlation with visual field damage. Am J Ophthalmol. 2002;133(6):758–763. doi:10.1016/s0002-9394(02)01422-8
  • Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regeneration Res. 2024;19(1):92–99. doi:10.4103/1673-5374.375319