54
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of Key Immune Infiltration Related Genes Involved in Aortic Dissection Using Bioinformatic Analyses and Experimental Verification

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2119-2135 | Received 11 Aug 2023, Accepted 29 Mar 2024, Published online: 05 Apr 2024

References

  • Rylski B, Schilling O, Czerny M. Acute aortic dissection: evidence, uncertainties, and future therapies. Eur Heart J. 2023;44(10):813–821. doi:10.1093/eurheartj/ehac757
  • Pape LA, Awais M, Woznicki EM, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the International Registry of Acute Aortic Dissection. Journal of the American College of Cardiology. 2015;66:350–358. doi:10.1016/j.jacc.2015.05.029
  • Juraszek A, Czerny M, Rylski B. Update in aortic dissection. Trends Cardiovasc Med. 2021;32:456–461. doi:10.1016/j.tcm.2021.08.008
  • Shen YH, LeMaire SA, Webb NR, et al. Aortic aneurysms and dissections series. Arteriosclerosis Thrombosis Vasc Biol. 2020;40:e37–e46. doi:10.1161/ATVBAHA.120.313991
  • Li S, Li J, Cheng W, et al. Independent and Interactive Roles of Immunity and Metabolism in Aortic Dissection. Int J Mol Sci. 2023;24:15908. doi:10.3390/ijms242115908
  • Liu J, Yang Y, Liu X, et al. Macrophage-biomimetic anti-inflammatory liposomes for homing and treating of aortic dissection. J Control Release. 2021;337:224–235. doi:10.1016/j.jconrel.2021.07.032
  • Liu F, Wei T, Liu L, et al. Role of Necroptosis and Immune Infiltration in Human Stanford Type A Aortic Dissection: novel Insights from Bioinformatics Analyses. Oxid Med Cell Longev. 2022;2022:6184802. doi:10.1155/2022/6184802
  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 2013;14:1–15. doi:10.1186/1471-2105-14-7
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1):1–13. doi:10.1186/1471-2105-9-559
  • Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. doi:10.1093/nar/gkac1000
  • Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014;8:1–7. doi:10.1186/1752-0509-8-S4-S11
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi:10.1038/nmeth.2089
  • Ainiwan M, Wang Q, Yesitayi G, et al. Identification of FERMT1 and SGCD as key marker in acute aortic dissection from the perspective of predictive, preventive, and personalized medicine. EPMA J. 2022;13:597–614. doi:10.1007/s13167-022-00302-4
  • Li Z, Wang J, Yu Q, et al. Identification of Immune-Related Gene Signature in Stanford Type A Aortic Dissection. Front Genet. 2022;13:911750. doi:10.3389/fgene.2022.911750
  • Pan H, Lu W, Liu Z, et al. Identification of ferroptosis-associated biomarkers in Stanford type A aortic dissection based on machine learning. Am J Transl Res. 2023;15:3092–3114.
  • Zhong A, Cai Y, Zhou Y, et al. Identification and Analysis of Hub Genes and Immune Cells Associated with the Formation of Acute Aortic Dissection. Comput Math Methods Med. 2023;2023:8072369. doi:10.1155/2023/8072369
  • Luo J, Shi H, Ran H, et al. Identification of key biomarkers and immune infiltration in the thoracic acute aortic dissection by bioinformatics analysis. BMC Cardiovascular Disorders. 2023;23:75. doi:10.1186/s12872-023-03110-4
  • Zeng Q, Rong Y, Li D, et al. Identification of serum biomarker in acute aortic dissection by global and targeted metabolomics. Ann Vasc Surg. 2020;68:497–504. doi:10.1016/j.avsg.2020.06.026
  • Ren Y, Tang Q, Liu W, et al. Serum biomarker identification by mass spectrometry in acute aortic dissection. Cell. Physiol. Biochem. 2018;44:2147–2157. doi:10.1159/000485954
  • Treanor B. B-cell receptor: from resting state to activate. Immunology. 2012;136(1):21–27. doi:10.1111/j.1365-2567.2012.03564.x
  • Raza IGA, Clarke AJ. B Cell Metabolism and Autophagy in Autoimmunity. Front Immunol. 2021;12:681105. doi:10.3389/fimmu.2021.681105
  • An Z, Liu Y, Song ZG, et al. Mechanisms of aortic dissection smooth muscle cell phenotype switch. J Thorac Cardiovasc Surg. 2017;154:1511–1521. doi:10.1016/j.jtcvs.2017.05.066
  • Wang Z, Zhuang X, Chen B, et al. Osteoglycin knockdown promotes vascular smooth muscle cell proliferation and migration in aortic dissection via the VEGF/VEGFR2 axis. Mol Med Rep. 2021;23:65. doi:10.3892/mmr.2020.11703
  • Zhang K, Qi Y, Wang M, et al. Long non-coding RNA HIF1A-AS2 modulates the proliferation, migration, and phenotypic switch of aortic smooth muscle cells in aortic dissection via sponging microRNA-33b. Bioengineered. 2022;13:6383–6395. doi:10.1080/21655979.2022.2041868
  • Zhu SB, Zhu J, Zhou ZZ, et al. TGF-β1 induces human aortic vascular smooth muscle cell phenotype switch through PI3K/AKT/ID2 signaling. Am J Transl Res. 2015;7:2764–2774.
  • Wang L, Wang Z, Zhang R, et al. MiR-4787-5p Regulates Vascular Smooth Muscle Cell Apoptosis by Targeting PKD1 and Inhibiting the PI3K/Akt/FKHR Pathway. J Cardiovasc Pharmacol. 2021;78(2):288–296. doi:10.1097/FJC.0000000000001051
  • Xie X, Hong X, Hong S, et al. Progression of Thoracic Aortic Dissection Is Aggravated by the hsa_circ_0007386/miR-1271-5P/IGF1R/AKT Axis via Induction of Arterial Smooth Muscle Cell Apoptosis. Biomedicines. 2023;11(2):571. doi:10.3390/biomedicines11020571
  • Smith RO, Ninchoji T, Gordon E, et al. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. Elife. 2020;9:e54056. doi:10.7554/eLife.54056
  • Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci. 2019;20(9):2067. doi:10.3390/ijms20092067
  • Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59:455–467.
  • Cebe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell. Mol. Life Sci. 2006;63:601–615. doi:10.1007/s00018-005-5426-3
  • Wang Z, Zhuang X, Chen B, et al. Osteoglycin knockdown promotes vascular smooth muscle cell proliferation and migration in aortic dissection via the VEGF/VEGFR2 axis. Mol Medicine Rep. 2021;23:1.
  • Seo SH, Hwang SY, Hwang S, et al. Hypoxia‐induced ELF3 promotes tumor angiogenesis through IGF1/IGF1R. EMBO Rep. 2022;23:e52977. doi:10.15252/embr.202152977
  • Truong T, Silkiss RZ. The Role of Insulin-like Growth Factor-1 and Its Receptor in the Eye: a Review and Implications for IGF-1R Inhibition. Ophthalmic Plastic Reconstructive Surg. 2023;39(1):4–12. doi:10.1097/IOP.0000000000002146
  • Li J, Li Y, Yuan X, et al. The effective constituent puerarin, from Pueraria lobata, inhibits the proliferation and inflammation of vascular smooth muscle in atherosclerosis through the miR-29b-3p/IGF1 pathway. Pharm Biol. 2023;61:1–11. doi:10.1080/13880209.2022.2099430
  • Uçar A, Tuğrul M, Erol BO, et al. Determinants of Increased Aortic Diameters in Young Normotensive Patients With Turner Syndrome Without Structural Heart Disease. Pediatr Cardiol. 2018;39(4):786–793. doi:10.1007/s00246-018-1821-z
  • Liu K, Chen B, Zeng F, et al. ApoE/NOS3 Knockout Mice as a Novel Cardiovascular Disease Model of Hypertension and Atherosclerosis. Genes. 2022;13(11):1998. doi:10.3390/genes13111998
  • Pautz A, Li H, Kleinert H. Regulation of NOS expression in vascular diseases. Front Bioscience-Landmark. 2021;26:85–101.
  • Özmen R, Tunçay A, Şener EF, et al. Relationship of genetic factors with development of aortic dissection and aneurysm. Turk Gogus Kalp Damar Cerrahisi Derg. 2018;26:557–564. doi:10.5606/tgkdc.dergisi.2018.16424
  • Peterson JC, Wisse LJ, Wirokromo V, et al. Disturbed nitric oxide signalling gives rise to congenital bicuspid aortic valve and aortopathy. Dis Model Mech. 2020;13:dmm044990. doi:10.1242/dmm.044990
  • Braile M, Marcella S, Cristinziano L, et al. VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci. 2020;21(15):5294. doi:10.3390/ijms21155294
  • Chuntharpursat-Bon E, Povstyan OV, Ludlow MJ, et al. PIEZO1 and PECAM1 interact at cell-cell junctions and partner in endothelial force sensing. Commun. Biol. 2023;6(1):358. doi:10.1038/s42003-023-04706-4
  • Chu Q, Song X, Xiao Y, et al. Alteration of endothelial permeability ensures cardiomyocyte survival from ischemic insult in the subendocardium of the heart. Exp Biol Med. 2023;248:1364–1372. doi:10.1177/15353702231194344
  • Li Y, Lv J. A comprehensive pan-cancer analysis of CDH5 in immunological response. Front Immunol. 2023;14:1239875. doi:10.3389/fimmu.2023.1239875
  • Xu C, Liu X, Fang X, et al. Single-cell RNA sequencing reveals smooth muscle cells heterogeneity in experimental aortic dissection. Front Genetics. 2022;13:836593. doi:10.3389/fgene.2022.836593
  • Park S, Kim J, Jang W, et al. Clinicopathologic significance of the delta-like ligand 4, vascular endothelial growth factor, and hypoxia-inducible factor-2α in gallbladder cancer. J Pathol Translational Med. 2023;57:113–122. doi:10.4132/jptm.2023.02.01
  • Xia S, Menden HL, Mabry SM, et al. HDAC6 and ERK/ADAM17 Regulate VEGF-Induced NOTCH Signaling in Lung Endothelial Cells. Cells. 2023;12(18):2231. doi:10.3390/cells12182231
  • Zou S, Ren P, Nguyen M, et al. Notch signaling in descending thoracic aortic aneurysm and dissection. PLoS One. 2012;7:e52833. doi:10.1371/journal.pone.0052833
  • Ye C, Pan L, Huang Y, et al. Somatic mutations in exon 17 of the TEK gene in vascular tumors and vascular malformations. J Vascular Surg. 2011;54:1760–1768. doi:10.1016/j.jvs.2011.06.098
  • Mahajan P, Bergstrom KL, Phung TL, et al. The genetics of vascular birthmarks. Clin Dermatol. 2022;40:313–321. doi:10.1016/j.clindermatol.2022.02.006
  • Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood J Am Soc Hematol. 2018;132:132–140.
  • Laboyrie SL, de Vries MR, de Jong A, et al. von Willebrand factor: a central regulator of arteriovenous fistula maturation through smooth muscle cell proliferation and outward remodeling. J Am Heart Assoc. 2022;11:e024581. doi:10.1161/JAHA.121.024581
  • Zindovic I, Sjögren J, Bjursten H, et al. The role of von Willebrand factor in acute type A aortic dissection and aortic surgery. Thromb Res. 2019;178:139–144. doi:10.1016/j.thromres.2019.04.018
  • Qin F, Impeduglia T, Schaffer P, et al. Overexpression of von Willebrand factor is an independent risk factor for pathogenesis of intimal hyperplasia: preliminary studies. J Vascular Surg. 2003;37:433–439. doi:10.1067/mva.2003.63
  • Lagrange J, Worou ME, Michel JB, et al. The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovascular Res. 2022;118:622–637. doi:10.1093/cvr/cvab042
  • Meng H, Zhang X, Lee SJ, et al. Von Willebrand factor inhibits mature smooth muscle gene expression through impairment of Notch signaling. PLoS One. 2013;8:e75808. doi:10.1371/journal.pone.0075808