103
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Lymphatic Vessels in Chronic Rhinosinusitis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 865-880 | Received 21 Aug 2023, Accepted 30 Nov 2023, Published online: 08 Feb 2024

References

  • Johnson LA, Jackson DG. Hyaluronan and Its Receptors: key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells. 2021;10(8):2061. doi:10.3390/cells10082061
  • Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci. 2022;23(13):56.
  • Schwager S, Detmar M. Inflammation and Lymphatic Function. Front Immunol. 2019;10:308. doi:10.3389/fimmu.2019.00308
  • Weber E, Aglianò M, Bertelli E, Gabriele G, Gennaro P, Barone V. Lymphatic Collecting Vessels in Health and Disease: a Review of Histopathological Modifications in Lymphedema. Lymphat Res Biol. 2022;20(5):468–477. doi:10.1089/lrb.2021.0090
  • Nishida-Fukuda H, Araki R, Shudou M, et al. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A). J Biol Chem. 2016;291(20):10490–10500. doi:10.1074/jbc.M115.683201
  • Wong HL, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824. doi:10.1038/ncomms10824
  • Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: redefining Its Role. Cells. 2020;9(7):1743. doi:10.3390/cells9071743
  • Jackson DG. Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol. 2019;78-79:219–235. doi:10.1016/j.matbio.2018.02.001
  • Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol. 2018;9:2787. doi:10.3389/fimmu.2018.02787
  • Savani RC, Hou G, Liu P, et al. A role for hyaluronan in macrophage accumulation and collagen deposition after bleomycin-induced lung injury. Am J Respir Cell Mol Biol. 2000;23(4):475–484. doi:10.1165/ajrcmb.23.4.3944
  • Kultti A, Zhao C, Singha NC, et al. Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int. 2014;2014:817613. doi:10.1155/2014/817613
  • Tahkola K, Ahtiainen M, Mecklin JP, et al. Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. Sci Rep. 2021;11(1):12216. doi:10.1038/s41598-021-91796-x
  • Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl S29).
  • Hao D, Wu Y, Li P, et al. An Integrated Analysis of Inflammatory Endotypes and Clinical Characteristics in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res. 2022;15:5557–5565. doi:10.2147/JIR.S377301
  • Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449–56.e4. doi:10.1016/j.jaci.2015.12.1324
  • Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. A Decade of Pathogenesis Advances in Non-Type 2 Inflammatory Endotypes in Chronic Rhinosinusitis: 2012-2022. Int Arch Allergy Immunol. 2023;1–17.
  • Luukkainen A, Seppälä M, Renkonen J, et al. Low lymphatic vessel density associates with chronic rhinosinusitis with nasal polyps. Rhinology. 2017;55(2):181–191. doi:10.4193/Rhin16.007
  • Keck T, Lindemann J. Numerical simulation and nasal air-conditioning. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010;9:Doc08. doi:10.3205/cto000072
  • Kim DK, Eun KM, Kim MK, et al. Comparison Between Signature Cytokines of Nasal Tissues in Subtypes of Chronic Rhinosinusitis. Allergy Asthma Immunol Res. 2019;11(2):201–211. doi:10.4168/aair.2019.11.2.201
  • Peng Y, Zi XX, Tian TF, et al. Whole-transcriptome sequencing reveals heightened inflammation and defective host defence responses in chronic rhinosinusitis with nasal polyps. Eur Respir J. 2019;54(5):1900732. doi:10.1183/13993003.00732-2019
  • Tan BK, Klingler AI, Poposki JA, et al. Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol. 2017;139(2):699–703.e7. doi:10.1016/j.jaci.2016.06.063
  • Orlandi RR, Kingdom TT, Smith TL, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol. 2021;11(3):213–739. doi:10.1002/alr.22741
  • Hardison SA, Senior BA. The argument against the use of dupilumab in patients with limited polyp burden in chronic rhinosinusitis with nasal polyposis (CRSwNP). J Otolaryngol Head Neck Surg. 2023;52(1):64. doi:10.1186/s40463-023-00668-z
  • Volmer T, Effenberger T, Trautner C, Buhl R. Consequences of long-term oral corticosteroid therapy and its side-effects in severe asthma in adults: a focused review of the impact data in the literature. Eur Respir J. 2018;52(4):1800703. doi:10.1183/13993003.00703-2018
  • Mueller SK, Wendler O, Nocera A, et al. Escalation in mucus cystatin 2, pappalysin-A, and periostin levels over time predict need for recurrent surgery in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019;9(10):1212–1219. doi:10.1002/alr.22407
  • Selvarani R, Van Michelle Nguyen H, Thadathil N, et al. Characterization of novel mouse models to study the role of necroptosis in aging and age-related diseases. Geroscience. 2023;45(6):3241–3256. doi:10.1007/s11357-023-00955-7
  • Grigorev IP, Korzhevskii DE. Modern Imaging Technologies of Mast Cells for Biology and Medicine (Review). Sovrem Tekhnologii Med. 2021;13(4):93–107. doi:10.17691/stm2021.13.4.10
  • de la Motte CA, Drazba JA. Viewing hyaluronan: imaging contributes to imagining new roles for this amazing matrix polymer. J Histochem Cytochem. 2011;59(3):252–257. doi:10.1369/0022155410397760
  • Cold Spring Harbor Laboratory. Mowiol-DABCO stock solution. Cold Spring Harb Protoc. 2007.
  • Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655–658. doi:10.1101/pdb.prot073411
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi:10.1038/nmeth.2089
  • Akishima Y, Ito K, Zhang L, et al. Immunohistochemical detection of human small lymphatic vessels under normal and pathological conditions using the LYVE-1 antibody. Virchows Arch. 2004;444(2):153–157. doi:10.1007/s00428-003-0950-8
  • Hirakawa S, Hong YK, Harvey N, et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol. 2003;162(2):575–586. doi:10.1016/S0002-9440(10)63851-5
  • Quintanilla M, Montero-Montero L, Renart J, Martín-Villar E. Podoplanin in Inflammation and Cancer. Int J Mol Sci. 2019;20(3):707. doi:10.3390/ijms20030707
  • Tadeo I, Gamero-Sandemetrio E, Berbegall AP, et al. Lymph microvascularization as a prognostic indicator in neuroblastoma. Oncotarget. 2018;9(40):26157–26170. doi:10.18632/oncotarget.25457
  • Kato A. Immunopathology of chronic rhinosinusitis. Allergol Int. 2015;64(2):121–130. doi:10.1016/j.alit.2014.12.006
  • Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571):1070–1075. doi:10.1126/science.abi5200
  • Güngör G, Okur N, Okur E. Uncinate Process Variations and Their Relationship with Ostiomeatal Complex: a Pictorial Essay of Multidedector Computed Tomography (MDCT) Findings. Pol J Radiol. 2016;81:173–180. doi:10.12659/PJR.895885
  • Huang Y, Wang M, Hong Y, et al. Reduced Expression of Antimicrobial Protein Secretory Leukoprotease Inhibitor and Clusterin in Chronic Rhinosinusitis with Nasal Polyps. J Immunol Res. 2021;2021:1057186. doi:10.1155/2021/1057186
  • Johnson LA, Prevo R, Clasper S, Jackson DG. Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem. 2007;282(46):33671–33680. doi:10.1074/jbc.M702889200
  • Jackson DG. Immunological functions of hyaluronan and its receptors in the lymphatics. Immunol Rev. 2009;230(1):216–231. doi:10.1111/j.1600-065X.2009.00803.x
  • Rudack C, Prehm P, Stoll W, Maune S. Extracellular matrix components in nasal polyposis. Acta Otolaryngol. 2003;123(5):643–647. doi:10.1080/0001648021000028133
  • Laurent C, Yoon YJ, Hvidsten I, Hellström S. Hyaluronan and alpha-atrial natriuretic polypeptide in human nasal polyps: contributing factors to oedema formation and polyp growth? Acta Otolaryngol. 2003;123(3):406–412. doi:10.1080/0036554021000028123
  • Cassandro E, Chiarella G, Cavaliere M, et al. Hyaluronan in the Treatment of Chronic Rhinosinusitis with Nasal Polyposis. Indian J Otolaryngol Head Neck Surg. 2015;67(3):299–307. doi:10.1007/s12070-014-0766-7
  • Abbate V, Iaconetta G, Maglitto F, et al. A Comparative Study of Different Administrations of Nebulized Hyaluronic Acid After Endoscopic Endonasal Surgery for Chronic Rhinosinusitis. Indian J Otolaryngol Head Neck Surg. 2022;74(Suppl 2):1037–1043. doi:10.1007/s12070-020-02110-6
  • Kobayashi T, Chanmee T, Itano N. Hyaluronan: metabolism and Function. Biomolecules. 2020;10(11):1525. doi:10.3390/biom10111525
  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–7218. doi:10.18632/oncotarget.23208
  • Bernstein JM, Gorfien J, Noble B, Yankaskas JR. Nasal polyposis: immunohistochemistry and bioelectrical findings (a hypothesis for the development of nasal polyps). J Allergy Clin Immunol. 1997;99(2):165–175. doi:10.1016/S0091-6749(97)70091-5
  • Donelan W, Dominguez-Gutierrez PR, Kusmartsev S. Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Front Immunol. 2022;13:971278. doi:10.3389/fimmu.2022.971278
  • Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2010;9:Doc07. doi:10.3205/cto000071