127
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

RNA Sequencing and Bioinformatics Analysis to Reveal Potential Biomarkers in Patients with Combined Allergic Rhinitis and Asthma Syndrome

, , , , ORCID Icon, ORCID Icon & show all
Pages 6211-6225 | Received 05 Sep 2023, Accepted 07 Dec 2023, Published online: 18 Dec 2023

References

  • Paiva Ferreira LKD, Paiva Ferreira LAM, Monteiro TM, Bezerra GC, Bernardo LR, Piuvezam MR. Combined allergic rhinitis and asthma syndrome (CARAS). Int Immunopharmacol. 2019;74:105718.
  • Xia S, Zhu Z, Guan WJ, et al. Correlation between upper and lower airway inflammations in patients with combined allergic rhinitis and asthma syndrome: a comparison of patients initially presenting with allergic rhinitis and those initially presenting with asthma. Exp Ther Med. 2018;15(2):1761–1767. doi:10.3892/etm.2017.5536
  • Bergeron C, Hamid Q. Relationship between asthma and rhinitis: epidemiologic, pathophysiologic, and therapeutic aspects. Allergy Asthma Clin Immunol. 2005;1(2):81–87. doi:10.1186/1710-1492-1-2-81
  • Rahman MA, Chakraborty R, Ferdousi KR, Alam A, Chowdhury MK, Paul BK. New therapeutic approach to treat allergic rhinitis and bronchial asthma, considering these two as one united airway disease. Mymensingh Med J. 2017;26(1):216–221.
  • Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis. Nat Rev Dis Primers. 2020;6(1):95. doi:10.1038/s41572-020-00227-0
  • Alobaidi AH, Alsamarai AM, Alsamarai MA. Inflammation in asthma pathogenesis: role of T cells, macrophages, epithelial cells and type 2 inflammation. Antiinflamm Antiallergy Agents Med Chem. 2021;20(4):317–332. doi:10.2174/1871523020666210920100707
  • Erle DJ, Sheppard D. The cell biology of asthma. J Cell Biol. 2014;205(5):621–631. doi:10.1083/jcb.201401050
  • Rupani H, Fong WCG, Kyyaly MA, Kurukulaaratchy RJ. Recent insights into the management of inflammation in asthma. J Inflamm Res. 2021;14:4371–4397. doi:10.2147/JIR.S295038
  • Marseglia GL, Caimmi S, Marseglia A, et al. Rhinosinusitis and asthma. Int J Immunopathol Pharmacol. 2010;23(1 Suppl):29–31. doi:10.1177/03946320100230S108
  • Matucci A, Bormioli S, Nencini F, et al. Asthma and chronic rhinosinusitis: how similar are they in pathogenesis and treatment responses? Int J Mol Sci. 2021;22(7):3340. doi:10.3390/ijms22073340
  • Wheatley LM, Togias A, Solomon CG. Clinical practice. Allergic rhinitis. N Engl J Med. 2015;372(5):456–463. doi:10.1056/NEJMcp1412282
  • Pawankar R, Mori S, Ozu C, Kimura S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy. 2011;1(3):157–167. doi:10.5415/apallergy.2011.1.3.157
  • Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol. 2020;20(1):48–55. doi:10.1097/ACI.0000000000000598
  • Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol. 2020;42(1):43–60. doi:10.1007/s00281-019-00777-w
  • Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol. 2016;937:3–17.
  • Ma Y, Shi L, Zhao K, Zheng C, Mora-Montes H. lncRNA FR215775 regulates Th2 differentiation in murine allergic rhinitis. J Immunol Res. 2022;2022:7783481. doi:10.1155/2022/7783481
  • Yang C, Shangguan C, Cai C, Xu J, Qian X. LncRNA HCP5 participates in the tregs functions in allergic rhinitis and drives airway mucosal inflammatory response in the nasal epithelial cells. Inflammation. 2022;45(3):1281–1297. doi:10.1007/s10753-022-01620-5
  • Jin P, Sun K, Zhang Q, et al. Peripheral circular RNA profiling from patients with allergic rhinitis identified hsa_circRNA_404013 as a potential diagnostic biomarker. Int Arch Allergy Immunol. 2022;183(10):1078–1088. doi:10.1159/000525791
  • Huang J, Wang FH, Wang L, Li Y, Lu J, Chen J. LncRNA MALAT1 promotes proliferation and migration of airway smooth muscle cells in asthma by downregulating microRNA-216a. Saudi J Biol Sci. 2021;28(8):4124–4131. doi:10.1016/j.sjbs.2021.03.076
  • Liang Q, Fu J, Wang X, et al. circS100A11 enhances M2a macrophage activation and lung inflammation in children with asthma. Allergy. 2022;78(6):1459–1472. doi:10.1111/all.15515
  • Zhang L, Wang X, Wang C, et al. Allergic rhinitis management path (Chinese version) of Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2019. Chin Arch Otolaryngol Head Neck Surg. 2019;26(12):690–699.
  • Dierick BJH, van der Molen T, Flokstra-de Blok BMJ, et al. Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert Rev Pharmacoecon Outcomes Res. 2020;20(5):437–453. doi:10.1080/14737167.2020.1819793
  • Eiringhaus K, Renz H, Matricardi P, Skevaki C. Component-resolved diagnosis in allergic rhinitis and asthma. J Appl Lab Med. 2019;3(5):883–898. doi:10.1373/jalm.2018.026526
  • Kappen JH, Durham SR, Veen HI, Shamji MH. Applications and mechanisms of immunotherapy in allergic rhinitis and asthma. Ther Adv Respir Dis. 2017;11(1):73–86. doi:10.1177/1753465816669662
  • Paiva Ferreira LKD, Paiva Ferreira LAM, Bezerra Barros GC, et al. MHTP, a synthetic alkaloid, attenuates combined allergic rhinitis and asthma syndrome through downregulation of the p38/ERK1/2 MAPK signaling pathway in mice. Int Immunopharmacol. 2021;96:107590. doi:10.1016/j.intimp.2021.107590
  • Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–559. doi:10.1111/j.1469-7580.2009.01066.x
  • Strunz M, Simon LM, Ansari M, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun. 2020;11(1):3559. doi:10.1038/s41467-020-17358-3
  • Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289(25):17406–17415. doi:10.1074/jbc.R113.546218
  • Bryborn M, Halldén C, Säll T, Cardell LO. CLC- a novel susceptibility gene for allergic rhinitis? Allergy. 2010;65(2):220–228. doi:10.1111/j.1398-9995.2009.02141.x
  • Lei Y, Guo P, An J, Guo C, Lu F, Liu M. Identification of pathogenic genes and upstream regulators in allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2018;115:97–103. doi:10.1016/j.ijporl.2018.09.005
  • Baines KJ, Simpson JL, Wood LG, et al. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J Allergy Clin Immunol. 2014;133(4):997–1007. doi:10.1016/j.jaci.2013.12.1091
  • Devouassoux G, Pachot A, Laforest L, et al. Galectin-10 mRNA is overexpressed in peripheral blood of aspirin-induced asthma. Allergy. 2008;63(1):125–131. doi:10.1111/j.1398-9995.2007.01558.x
  • Yang J, Wang WG, Zhang KQ. LINC00452 promotes ovarian carcinogenesis through increasing ROCK1 by sponging miR-501-3p and suppressing ubiquitin-mediated degradation. Aging. 2020;12(21):21129–21146. doi:10.18632/aging.103758
  • Morovat P, Morovat S, Ashrafi AM, Teimourian S. Identification of potentially functional circular RNAs hsa_circ_0070934 and hsa_circ_0004315 as prognostic factors of hepatocellular carcinoma by integrated bioinformatics analysis. Sci Rep. 2022;12(1):4933. doi:10.1038/s41598-022-08867-w
  • Mostafaei S, Kazemnejad A, Azimzadeh Jamalkandi S, Amirhashchi S. Identification of novel genes in human airway epithelial cells associated with Chronic Obstructive Pulmonary Disease (COPD) using machine-based learning algorithms. Sci Rep. 2018;8(1):15775. doi:10.1038/s41598-018-33986-8
  • Umu SU, Langseth H, Bucher-Johannessen C. A comprehensive profile of circulating RNAs in human serum. RNA Biol. 2018;15(2):242–250. doi:10.1080/15476286.2017.1403003
  • Min JY, Tan BK. Risk factors for chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2015;15(1):1–13. doi:10.1097/ACI.0000000000000128
  • Elena-Perez S, Heredero-Jung DH, Garcia-Sanchez A, et al. Molecular analysis of IL-5 receptor subunit alpha as a possible pharmacogenetic biomarker in asthma. Front Med. 2020;7:624576. doi:10.3389/fmed.2020.624576
  • Ju JM, Nam G, Lee YK, et al. IDO1 scavenges reactive oxygen species in myeloid-derived suppressor cells to prevent graft-versus-host disease. Proc Natl Acad Sci U S A. 2021;118(10):e2011170118. doi:10.1073/pnas.2011170118
  • McLetchie S, Volpp BD, Dinauer MC, Blum JS. Hyper-responsive toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts. Immunology. 2015;146(4):595–606. doi:10.1111/imm.12530
  • Wang J, Hu Y, Deng WW, Sun B. Negative regulation of toll-like receptor signaling pathway. Microbes Infect. 2009;11(3):321–327. doi:10.1016/j.micinf.2008.12.011
  • Liu F, Li X, Yue H, et al. TLR-induced SMPD3 defects enhance inflammatory response of B cell and macrophage in the pathogenesis of SLE. Scand J Immunol. 2017;86(5):377–388. doi:10.1111/sji.12611
  • Lemonnier N, Melén E, Jiang Y, et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 2020;75(12):3248–3260. doi:10.1111/all.14314
  • Yang Z, Ross RA, Zhao S, Tu W, Liangpunsakul S, Wang L. LncRNA AK054921 and AK128652 are potential serum biomarkers and predictors of patient survival with alcoholic cirrhosis. Hepatol Commun. 2017;1(6):513–523. doi:10.1002/hep4.1061
  • Thompson MD, Capra V, Clunes MT, et al. Cysteinyl leukotrienes pathway genes, atopic asthma and drug response: from population isolates to large genome-wide association studies. Front Pharmacol. 2016;7:299. doi:10.3389/fphar.2016.00299
  • Yamauchi K, Inoue H. Airway remodeling in asthma and irreversible airflow limitation-ECM deposition in airway and possible therapy for remodeling. Allergol Int. 2007;56(4):321–329. doi:10.2332/allergolint.R-07-151
  • Royce SG, Tan L, Koek AA, Tang MLK. Effect of extracellular matrix composition on airway epithelial cell and fibroblast structure: implications for airway remodeling in asthma. Ann Allergy Asthma Immunol. 2009;102(3):238–246. doi:10.1016/S1081-1206(10)60087-7
  • Todorova L, Bjermer L, Westergren-Thorsson G, Miller-Larsson A. TGFβ-induced matrix production by bronchial fibroblasts in asthma: budesonide and formoterol effects. Respir Med. 2011;105(9):1296–1307. doi:10.1016/j.rmed.2011.03.020
  • Shifren A, Witt C, Christie C, Castro M. Mechanisms of remodeling in asthmatic airways. J Allergy. 2012;2012:316049. doi:10.1155/2012/316049
  • Reeves SR, Kolstad T, Lien TY, et al. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol. 2014;134(3):663–670 e661. doi:10.1016/j.jaci.2014.04.007
  • Eliseeva TI, Tush EV, Krasilnikova SV, Kuznetsova SV, Ignatov SK. Metabolism of the extracellular matrix in bronchial asthma (Review). Sovrem Tekhnologii Med. 2018;10(4):220. doi:10.17691/stm2018.10.4.25
  • Bousquet J, Jacot W, Vignola AM, Bachert C, Van Cauwenberge P. Allergic rhinitis: a disease remodeling the upper airways? J Allergy Clin Immunol. 2004;113(1):43–49. doi:10.1016/j.jaci.2003.09.047
  • Karimi K, Forsythe P. Natural killer cells in asthma. Front Immunol. 2013;4:159. doi:10.3389/fimmu.2013.00159
  • Kim JH, Jang YJ. Role of natural killer cells in airway inflammation. Allergy Asthma Immunol Res. 2018;10(5):448–456. doi:10.4168/aair.2018.10.5.448
  • Kim JH, Choi GE, Lee BJ, et al. Natural killer cells regulate eosinophilic inflammation in chronic rhinosinusitis. Sci Rep. 2016;6:27615. doi:10.1038/srep27615
  • Nadif R, Zerimech F, Bouzigon E, Matran R. The role of eosinophils and basophils in allergic diseases considering genetic findings. Curr Opin Allergy Clin Immunol. 2013;13(5):507–513. doi:10.1097/ACI.0b013e328364e9c0
  • Poddighe D, Mathias CB, Brambilla I, Marseglia GL, Oettgen HC. Importance of basophils in eosinophilic asthma: the murine counterpart. J Biol Regul Homeost Agents. 2018;32(2):335–339.
  • Luo C, Peng S, Li M, Ao X, Liu Z. The efficacy and safety of probiotics for allergic rhinitis: a systematic review and meta-analysis. Front Immunol. 2022;13:848279. doi:10.3389/fimmu.2022.848279
  • da Silva AL, Magalhaes RF, Branco VC, et al. The tyrosine kinase inhibitor dasatinib reduces lung inflammation and remodelling in experimental allergic asthma. Br J Pharmacol. 2016;173(7):1236–1247. doi:10.1111/bph.13430