85
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Are Changes in Serum IgG Glycosylation Related to the Severe Course of SARS-CoV-2 Infection and Recovery Process? In Search of New Diagnostic and Prognostic Biomarkers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1413-1427 | Received 30 Oct 2023, Accepted 16 Feb 2024, Published online: 01 Mar 2024

References

  • Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 2021;19(11):685–700. doi:10.1038/s41579-021-00630-8
  • Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:141–154. doi:10.1038/s41579-020-00459-7
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
  • Ward PA, Fattahi F, Bosmann M. New insights into molecular mechanisms of immune complex-induced injury in lung. Front Immunol. 2016;7(86). doi:10.3389/fimmu.2016.00086
  • Böhm S, Schwab I, Lux A, Nimmerjahn F. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol. 2012;34:443–453. doi:10.1007/s00281-012-0308-x
  • Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol. 2017;13:621–630. doi:10.1038/nrrheum.2017.146
  • Kiyoshi M, Tsumoto K, Ishii-Watabe A, Caaveiro JMM. Glycosylation of IgG-Fc: a molecular perspective. Int Immunol. 2017;29(7):311–317. doi:10.1093/intimm/dxx038
  • Van De Bovenkamp FS, Derksen NIL, Van Breemen MJ, et al. Variable domain N-Linked glycans acquired during antigen-specific immune responses can contribute to immunoglobulin g antibody stability. Front Immunol. 2018;12(9):740. doi:10.3389/fimmu.2018.00740
  • Kozłowska K, Rydlewska M, Ząbczyńska M, Pocheć E. IgG glycosylation in autoimmune diseases. Postepy Hig Med Dosw. 2018;72:975–990. doi:10.5604/01.3001.0012.7351
  • Pasek M, Duk M, Podbielska M, et al. Galactosylation of IgG from rheumatoid arthritis (RA) patients-changes during therapy. Glycoconjugate J. 2006;23(7–8):463–471. doi:10.1007/s10719-006-5409-0
  • Mizuochi T, Taniguchi T, Shimizu A, Kobata A. Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol. 1982;129:2016–2020.
  • Shibata-Koyama M, Iida S, Okazaki A, et al. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gammaRIIIa binding affinity to IgG glycoforms lacking core fucosylation. Glycobiology. 2009;19:126–134. doi:10.1093/glycob/cwn110
  • Ferrara C, Grau S, Jager C, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A. 2011;108:12669–12674. doi:10.1073/pnas.1108455108
  • Mizushima T, Yagi H, Takemoto E, et al. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells. 2011;16(11):1071–1080. doi:10.1111/j.1365-2443.2011.01552.x
  • Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem. 2008;143:725–729. doi:10.1093/jb/mvn011
  • Ma B, Simala-Grant JL, Taylor DE. Fucosylation in prokaryotes and eukaryotes. Glycobiology. 2006;16:158–184. doi:10.1093/glycob/cwl040
  • Thompson S, Kelly CA, Griffiths ID, Turner GA. Abnormally-fucosylated serum haptoglobins in patients with inflammatory joint disease. Clin Chim Acta. 1989;184:251–258. doi:10.1016/0009-8981(89)90058-2
  • Brinkman-van der Linden EC, de Haan PF, Havenaar EC, van Dijk W. Inflammation-induced expression of sialyl LewisX is not restricted to alpha1-acid glycoprotein but also occurs to a lesser extent on alpha1-antichymotrypsin and haptoglobin. Glycoconjugate J. 1998;15:177–182. doi:10.1023/a:1006972307166
  • Goodarzi MT, Axford JS, Varanasi SS, et al. Sialyl Lewis(x) expression on IgG in rheumatoid arthritis and other arthritic conditions: a preliminary study. Glycoconjugate J. 1998;15:1149–1154. doi:10.1023/a:1006920007227
  • Li J, Hsu HC, Ding Y, et al. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol. 2014;66:2368–2379. doi:10.1002/art.38711
  • Ryden I, Pahlsson P, Lundblad A, Skogh T. Fucosylation of α1-acid glycoprotein (orosomucoid) compared with traditional biochemical markers of inflammation in recent onset rheumatoid arthritis. Clin Chim Acta. 2002;317:221–229. doi:10.1016/s0009-8981(01)00803-8
  • Sarrats A, Saldova R, Pla E, et al. Glycosylation of liver acute phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin Appl. 2010;4:432–448. doi:10.1002/prca.200900150
  • Miyoshi J, Yajima T, Okamoto S, et al. Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn’s disease. J Gastroenterol. 2011;46:1056–1063. doi:10.1007/s00535-011-0425-7
  • Maroni L, van de Graaf SFJ, Hohenester SD, et al. Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn’s disease–a comprehensive review. Clin Rev Allergy Immunol. 2015;48:182–191. doi:10.1007/s12016-014-8423-1
  • Plomp R, Dekkers G, Rombouts Y, et al. Hinge-Region O-Glycosylation of Human Immunoglobulin G3 (IgG3). Mol Cell Proteom. 2015;14:1373–1384. doi:10.1074/mcp.M114.047381
  • Sołkiewicz K, Kacperczyk M, Krotkiewski H, Jędryka M, Kratz EM. O-glycosylation changes in serum immunoglobulin G are associated with inflammation development in advanced endometriosis. Int J Mol Sci. 2022;23(15):8087. doi:10.3390/ijms23158087
  • Hounsell EF, Davies MJ, Renouf DV. O-linked protein glycosylation structure and function. Glycoconjugate J. 1996;13:19–26. doi:10.1007/BF01049675
  • Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and Principles of O-Linked Glycosylation. Crit Rev Biochem Mol Biol. 1998;33:151–208. doi:10.1080/10409239891204198
  • Inoue M, Yamashina I, Nakada H. Glycosylation of the tandem repeat unit of the MUC2 polypeptide leading to the synthesis of the Tn Antigen. Biochem Biophys Res Commun. 1998;245:23–27. doi:10.1006/bbrc.1998.8369
  • Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 2006;7:599–604.
  • Flisiak R, Horban A, Jaroszewicz J, et al. Management of SARS-CoV-2 infection: recommendations of the Polish Association of Epidemiologists and Infectiologists as of March 31, 2020. Pol Arch Intern Med. 2020;130:352–355. doi:10.20452/pamw.15270
  • Kokot I, Piwowar A, Jędryka M, Sołkiewicz K, Kratz EM. Diagnostic significance of selected serum inflammatory markers in women with advanced endometriosis. Int J Mol Sci. 2021;22(5):2295. doi:10.3390/ijms22052295
  • Sołkiewicz K, Krotkiewski H, Jędryka M, Kratz EM. Variability of serum IgG sialylation and galactosylation degree in women with advanced endometriosis. Sci Rep. 2021;11(1):5586. doi:10.1038/s41598-021-85200-x
  • Sołkiewicz K, Krotkiewski H, Jędryka M, Czekański A, Kratz EM. The alterations of serum IgG fucosylation as a potential additional new diagnostic marker in advanced endometriosis. J Inflamm Res. 2022;15:251–266. eCollection 2022. doi:10.2147/JIR.S341906
  • Lastovickova M, Strouhalova D, Bobalova J. Use of lectin-based affinity techniques in breast cancer glycoproteomics: a review. J Proteome Res. 2020;19:1885–1899. doi:10.1021/acs.jproteome.9b00818
  • Wu AM, Song SC, Sugii S, Herp A. Differential binding properties of Gal/GalNAc specific lectins available for characterization of glycoreceptors. Indian J Biochem Biophys. 1997;34(1–2):61–71.
  • Yamashita K, Kochibe N, Ohkura T, Ueda I, Kobata A. Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J Biol Chem. 1985;260:4688–4693. doi:10.1016/S0021-9258(18)891256
  • Tateno H, Nakamura-Tsuruta S, Hirabayashi J. Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology. 2009;19:527–536. doi:10.1093/glycob/cwp016
  • Yan L, Wilkins PP, Alvarez-Manilla G, Do SI, Smith DF, Cummings RD. Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Le(x) determinant. Glycoconjugate J. 1997;14:45–55. doi:10.1023/a:1018508914551
  • Loris R, De Greve H, Dao-Thi MH, Messens J, Imberty A, Wyns L. Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate binding site. J Mol Biol. 2000;301:987–1002. doi:10.1006/jmbi.2000.4016
  • Li WP, Zuber C, Roth J. Use of Phaseolus vulgaris leukoagglutinating lectin in histochemical and blotting techniques: a comparison of digoxigenin- and biotin-labelled lectins. Histochem Cell Biol. 1993;100:347–356. doi:10.1007/BF00268933
  • Wu AM. Polyvalent GalNAcα1→Ser/Thr (Tn) and Galβ1→3GalNAcα1→Ser/Thr (T α) as the most potent recognition factors involved in Maclura pomifera agglutinin–glycan interactions. J Biomed Sci. 2005;12(1):135–152. doi:10.1007/s11373-004-8178-4
  • Tollefsen S, Kornfeld R. Vicia villosa lectins. Methods Enzymol. 1987;138:536–544. doi:10.1016/0076-6879(87)38048-6
  • Puri KD, Gopalakrishnan B, Surolia A. Carbohydrate binding specificity of the Tn-antigen binding lectin from Vicia villosa seeds (VVLB4). FEBS Lett. 1992;312:208–212. doi:10.1016/0014-5793(92)80937-c
  • Tachibana K, Nakamura S, Wang H, et al. Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography. Glycobiology. 2006;16:46–53. doi:10.1093/glycob/cwj038
  • Bossuyt X. Clinical performance characteristics of a laboratory test. A practical approach in the autoimmune laboratory. Autoimmune Rev. 2009;8:543–548.
  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25(1):21–50. doi:10.1146/annurev.immunol.25.022106.141702
  • Quast I, Lünemann JD. Fc glycan-modulated immunoglobulin G effector functions. J Clin Immunol. 2014;34(Suppl 1):S51–S55. doi:10.1007/s10875-014-0018-3
  • Schroeder HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;25:41–52. doi:10.1016/j.jaci.2009.09.046
  • Petrović T, Alves I, Bugada D, et al. Composition of the immunoglobulin g glycome associates with the severity of COVID-19. Glycobiology. 2020;31(4):372–377. doi:10.1093/glycob/cwaa102
  • Hou H, Yang H, Liu P, et al. Profile of immunoglobulin G N-glycome in COVID-19 patients: a case-control study. Front Immunol. 2021;12:748566. doi:10.3389/fimmu.2021.748566
  • Wang Y, Yu G, Han Z, et al. Specificities of Ricinus communis agglutinin 120 interaction with sulfated galactose. FEBS Lett. 2011;585(24):3927–3934. doi:10.1016/j.febslet.2011.10.035
  • Liljeblad M, Lundblad A, Pahlsson P. Analysis of agalacto-IgG in rheumatoid arthritis using surface plasmon resonance. Glycoconjugate J. 2000;17(5):323–329. doi:10.1023/a:1007169621518
  • Bournazos S, Wang TT, Ravetch JV. The role and function of fcgamma receptors on myeloid cells. Microbiol Spectr. 2016;4(6). doi:10.1128/microbiolspec.MCHD-0045-2016
  • Li J, Hsu HC, Mountz JD, Allen JG. Unmasking fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem Biol. 2018;25(5):499–512. doi:10.1016/j.chembiol.2018.02.005
  • Oosterhoff JJ, Larsen MD, van der Schoot CE, Vidarsson G. Afucosylated IgG responses in humans-structural clues to the regulation of humoral immunity. Trends Immunol. 2022;43(10):800–814. doi:10.1016/j.it.2022.08.001
  • Ackerman ME, Crispin M, Yu X, et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Invest. 2013;123:2183–2192. doi:10.1172/JCI65708
  • Wang TT, Sewatanon J, Memoli MJ, et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science. 2017;355(6323):395–398. doi:10.1126/science.aai8128
  • Larsen MD, De Graaf EL, Sonneveld ME, et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science. 2020;371(6532). doi:10.1126/science.abc8378
  • Zauner G, Selman MH, Bondt A, et al. Glycoproteomic analysis of antibodies. Mol Cell Proteomics. 2013;12:856–865. doi:10.1074/mcp.R112.026005
  • Chakraborty S, Gonzales JC, Sievers BL, et al. Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Sci Trans Med. 2022;14:635. doi:10.1126/scitranslmed.abm7853
  • Kutsuna S, Asai Y, Matsunaga A, et al. Factors associated with anti-SARS-CoV-2 IgG antibody production in patients convalescing from COVID-19. J Infect Chemother. 2021;27(6):808–813. doi:10.1016/j.jiac.2021.01.006
  • Kajiyama H, Suzuki S, Yoshihara M, et al. Endometriosis and cancer. Free Radic Biol Med. 2019;133:186–192. doi:10.1016/j.freeradbiomed.2018.12.015
  • Hanzawa K, Tanaka-Okamoto M, Murakami H, et al. Increased levels of acidic free-N-glycans, including multi-antennary and fucosylated structures, in the urine of cancer patients. PLoS One. 2022;17(4):e0266927. doi:10.1371/journal.pone.0266927
  • Rayan FJ, Hope CM, Masavuli MG, et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022;20(1):26. doi:10.1186/s12916-021-02228-6