187
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Exploring the Connectivity of Neurodegenerative Diseases: Microglia as the Center

ORCID Icon, , , , , , , & show all
Pages 6107-6121 | Received 15 Sep 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Sahu MR, Rani L, Subba R, Mondal AC. Cellular senescence in the aging brain: a promising target for neurodegenerative diseases. Mech Ageing Dev. 2022;204:111675. doi:10.1016/j.mad.2022.111675
  • Combes GF, Pellay FX, Radman M. Cause commune et mécanisme commun aux maladies du vieillissement ? [Common cause and mechanism for all pathologies of aging?]. Med Sci. 2020;36(12):1129–1134. doi:10.1051/medsci/2020221 French.
  • Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, Villegas S. Mouse Models of Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1171–1183. doi:10.3233/JAD-170045
  • Hayes MT. Parkinson’s Disease and Parkinsonism. Am J Med. 2019;132(7):802–807. doi:10.1016/j.amjmed.2019.03.001
  • Patel R, McKinnon BJ. Hearing Loss in the Elderly. Clin Geriatr Med. 2018;34(2):163–174. doi:10.1016/j.cger.2018.01.001
  • Hindle JV. Ageing, neurodegeneration and Parkinson’s disease. Age Ageing. 2010;39(2):156–161. doi:10.1093/ageing/afp223
  • Fujiwara S, Urata K, Oto T, et al. Age-related Changes in Trigeminal Ganglion Macrophages Enhance Orofacial Ectopic Pain After Inferior Alveolar Nerve Injury. Vivo. 2023;37(1):132–142. doi:10.21873/invivo.13062
  • Karuppagounder V, Giridharan VV, Arumugam S. Modulation of Macrophage Polarization and HMGB1-TLR2/TLR4 Cascade Plays a Crucial Role for Cardiac Remodeling in Senescence-Accelerated Prone Mice. PLoS One. 2016;11(4):e0152922. doi:10.1371/journal.pone.0152922
  • Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402. doi:10.1146/annurev-immunol-032713-120240
  • Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–758. doi:10.1038/nn1472
  • Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. 2017;35:441–468. doi:10.1146/annurev-immunol-051116-052358
  • Wright-Jin EC, Gutmann DH. Microglia as Dynamic Cellular Mediators of Brain Function. Trends Mol Med. 2019;25(11):967–979. doi:10.1016/j.molmed.2019.08.013
  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–1369. doi:10.1038/s41593-018-0242-x
  • Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–665. doi:10.1111/bph.13139
  • Jorfi M, Maaser-Hecker A, Tanzi RE. The neuroimmune axis of Alzheimer’s disease. Genome Med. 2023;15(1):6. doi:10.1186/s13073-023-01155-w
  • Qian B, Yang Y, Tang N, et al. M1 macrophage-derived exosomes impair beta cell insulin secretion via miR-212-5p by targeting SIRT2 and inhibiting Akt/GSK-3β/β-catenin pathway in mice. Diabetologia. 2021;64(9):2037–2051. doi:10.1007/s00125-021-05489-1
  • Zhu B, Liu Y, Hwang S, et al. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes. Mol Neurodegener. 2022;17(1):58. doi:10.1186/s13024-022-00562-8
  • Stucky SR, Wolf KE, Kuo T. The economic effect of age-related hearing loss: national, state, and local estimates, 2002 and 2030. J Am Geriatr Soc. 2010;58:618–619.
  • Wu T, Zhou J, Qiu J, et al. Tumor necrosis factor-α mediated inflammation versus apoptosis in age-related hearing loss [J]. Front Aging Neurosci. 2022;14:956503.
  • Seicol BJ, Lin S, Xie R. Age-Related Hearing Loss Is Accompanied by Chronic Inflammation in the Cochlea and the Cochlear Nucleus. Front Aging Neurosci. 2022;14:846804. doi:10.3389/fnagi.2022.846804
  • Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–1178. doi:10.1016/j.cell.2007.10.036
  • Mou W, Ma L, Zhu A, Cui H, Huang Y. Astrocyte-microglia interaction through C3/C3aR pathway modulates neuropathic pain in rats model of chronic constriction injury. Mol Pain. 2022;18:17448069221140532. doi:10.1177/17448069221140532
  • Pouw RB, Ricklin D. Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol. 2021;43(6):757–771. doi:10.1007/s00281-021-00892-7
  • Ziyang L. Research on Specific Pro-Regression Mediators in Delaying the Progression of Retinal Degenerative Diseases and Their Mechanisms[D]. Chinese People’s Liberation Army Army Medical University; 2019; doi:10.27001/d.cnki.gtjyu.2019.000109
  • Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: functions and diseases. Immunology. 2022;166(3):268–286. doi:10.1111/imm.13479
  • Gao H, Huang X, He J, Zou T, Chen X, Xu H. The roles of microglia in neural remodeling during retinal degeneration. Histol Histopathol. 2022;37(1):1–10. doi:10.14670/HH-18-384
  • Chen M, Luo C, Zhao J, Devarajan G, Xu H. Immune regulation in the aging retina. Prog Retin Eye Res. 2019;69:159–172. doi:10.1016/j.preteyeres.2018.10.003
  • Yulin Q, Qianyu J, Hejiang Y. CX3CR1 Research progress of microglia in retinal degenerative diseases. Int J Ophthalmol. 2021;21(8):1363.
  • Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70. doi:10.1111/ene.13439
  • Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol. 2019;167:231–255. doi:10.1016/B978-0-12-804766-8.00013-3
  • Zhang H, Zheng Y. β淀粉样蛋白级联假说相关的阿尔茨海默病发病机制及防治策略研究进展 [β Amyloid Hypothesis in Alzheimer’s Disease:Pathogenesis, Prevention, and Management]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2019;41(5):702–708. doi:10.3881/j.issn.1000-503X.10875 Chinese.
  • Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6(6176). doi:10.1038/ncomms7176
  • Nguyen AT, Wang K, Hu G, et al. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neuropathol. 2020;140(4):477–493. doi:10.1007/s00401-020-02200-3
  • Bemiller SM, McCray TJ, Allan K, et al. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener. 2017;12(74):216.
  • Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18(11):1584–1593. doi:10.1038/nn.4132
  • Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217(2):459–472. doi:10.1083/jcb.201709069
  • George S, Rey NL, Tyson T, et al. Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Mol Neurodegener. 2019;14(1):34. doi:10.1186/s13024-019-0335-3
  • Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience. 2015;302:47–58. doi:10.1016/j.neuroscience.2015.02.008
  • Liu TW, Chen CM, Chang KH. Biomarker of Neuroinflammation in Parkinson’s Disease. Int J Mol Sci. 2022;23(8):4148. doi:10.3390/ijms23084148
  • Zhang YN, Fan JK, Gu L, Yang HM, Zhan SQ, Zhang H. Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson’s disease. J Neuroinflammation. 2021;18(1):23. doi:10.1186/s12974-021-02079-1
  • Xu Y, Li Y, Wang C, et al. The reciprocal interactions between microglia and T cells in Parkinson’s disease: a double-edged sword. J Neuroinflammation. 2023;20(1):33. doi:10.1186/s12974-023-02723-y
  • Ho MS. Microglia in Parkinson’s Disease. Adv Exp Med Biol. 2019;1175:335–353. doi:10.1007/978-981-13-9913-8_13
  • El Andaloussi S, Lakhal S, Mäger I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391–397. doi:10.1016/j.addr.2012.08.008
  • Guo M, Wang J, Zhao Y, et al. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain. 2020;143(5):1476–1497. doi:10.1093/brain/awaa090
  • Guo Y, Wei X, Yan H, et al. TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J. 2019;33(11):12164–12174. doi:10.1096/fj.201900992R
  • Zhang Y, Feng S, Nie K, et al. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun. 2018;499(4):797–802. doi:10.1016/j.bbrc.2018.03.226
  • Boillée S, Ande V Elde C V, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006a;52:39–59.
  • Kassa RM, Mariotti R, Bonaconsa M, Bertini G, Bentivoglio M. Gene, cell, and axon changes in the familial amyotrophic lateral sclerosis mouse sensorimotor cortex. J Neuropathol Exp Neurol. 2009;68:59–72.
  • Moisse K, Strong MJ. Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762:1083–1093.
  • Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4(4):389–398. doi:10.1007/s11481-009-9171-5
  • Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D’Ambrosi N. The Dual Role of Microglia in ALS: mechanisms and Therapeutic Approaches. Front Aging Neurosci. 2017;9:242. doi:10.3389/fnagi.2017.00242
  • Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci. 2014;8:117. doi:10.3389/fncel.2014.00117
  • Choi S, Guo L, Cordeiro MF. Retinal and Brain Microglia in Multiple Sclerosis and Neurodegeneration. Cells. 2021;10(6):1507. doi:10.3390/cells10061507
  • McNamara NB, Munro DAD, Bestard-Cuche N, et al. Microglia regulate central nervous system myelin growth and integrity. Nature. 2023;613(7942):120–129. doi:10.1038/s41586-022-05534-y
  • Guerrero BL, Sicotte NL. Microglia in Multiple Sclerosis: friend or Foe? Front Immunol. 2020;11:374. doi:10.3389/fimmu.2020.00374
  • Yong VW. Microglia in multiple sclerosis: protectors turn destroyers. Neuron. 2022;110(21):3534–3548. doi:10.1016/j.neuron.2022.06.023
  • Gillen KM, Mubarak M, Nguyen TD, Pitt D. Significance and In Vivo Detection of Iron-Laden Microglia in White Matter Multiple Sclerosis Lesions. Front Immunol. 2018;9:255. doi:10.3389/fimmu.2018.00255
  • Bogie JF, Stinissen P, Hendriks JJ. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 2014;128(2):191–213. doi:10.1007/s00401-014-1310-2
  • Rawji KS, Yong VW. The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol. 2013;2013:948976. doi:10.1155/2013/948976
  • Voet S, Prinz M, van Loo G. Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends Mol Med. 2019;25(2):112–123. doi:10.1016/j.molmed.2018.11.005
  • Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539:180–186. doi:10.1038/nature20411
  • Taguchi T, Ota H, Matsuda T, Murase S, Mizumura K. Cutaneous C-fiber nociceptor responses and nociceptive behaviors in aged Sprague–Dawley rats. Pain. 2010;151:771–782. doi:10.1016/j.pain.2010.09.011
  • Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and pro-inflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115:71–83.
  • Obata H, Eisenach JC, Hussain H, Bynum T, Vincler M. Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain. 2006;7:816–822. doi:10.1016/j.jpain.2006.04.004
  • Pan TT, Pan F, Gao W, Hu SS, Wang D. Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain. Curr Rheumatol Rep. 2021;23(5):29. doi:10.1007/s11926-021-00997-w
  • Hahm SC, Lee JS, Yoon YW, Kim J. Analgesic Tolerance Development during Repetitive Electric Stimulations Is Associated with Changes in the Expression of Activated Microglia in Rats with Osteoarthritis. Biomedicines. 2020;8(12):575. doi:10.3390/biomedicines8120575
  • Sago T, Ono K, Harano N, et al. Distinct time courses of microglial and astrocytic hyperactivation and the glial contribution to pain hypersensitivity in a facial cancer model. Brain Res. 2012;1457:70–80. doi:10.1016/j.brainres.2012.03.039
  • Shinoda M, Kubo A, Hayashi Y, Iwata K. Peripheral and central mechanisms of persistent orofacial Pain. Front Neurosci. 2019;13:1227. doi:10.3389/fnins.2019.01227
  • Ikutame D, Urata K, Oto T, et al. Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. Int J Mol Sci. 2020;21(21):7871. doi:10.3390/ijms21217871
  • Jin MM, Wang F, Qi D, et al. A Critical role of autophagy in regulating microglia polarization in neurodegeneration. Front Aging Neurosci. 2018;10:378. doi:10.3389/fnagi.2018.00378
  • Laffer B, Bauer D, Wasmuth S, et al. Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Front Cell Neurosci. 2019;13:430. doi:10.3389/fncel.2019.00430
  • Du X, Xu Y, Chen S, Fang M. Inhibited CSF1R Alleviates Ischemia Injury via Inhibition of Microglia M1 Polarization and NLRP3 Pathway. Neural Plast. 2020;2020:8825954. doi:10.1155/2020/8825954
  • Lin W, Xu D, Austin CD, et al. Function of CSF1 and IL34 in Macrophage Homeostasis, Inflammation, and Cancer. Front Immunol. 2019;10:2019. doi:10.3389/fimmu.2019.02019
  • Marzan DE, Brügger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL. Activated microglia drive demyelination via CSF1R signaling. Glia. 2021;69(6):1583–1604. doi:10.1002/glia.23980
  • Sosna J, Philipp S, Albay R 3rd, et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener. 2018;13(1):11. doi:10.1186/s13024-018-0244-x
  • Kiani Shabestari S, Morabito S, Danhash EP, et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell Rep. 2022;39(11):110961. doi:10.1016/j.celrep.2022.110961
  • Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight. 2017;2(7):e91229. doi:10.1172/jci.insight.91229
  • Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. Microglia Elimination Increases Neural Circuit Connectivity and Activity in Adult Mouse Cortex. J Neurosci. 2021;41(6):1274–1287. doi:10.1523/JNEUROSCI.2140-20.2020
  • Fujiwara T, Yakoub MA, Chandler A, et al. CSF1/CSF1R Signaling Inhibitor Pexidartinib (PLX3397) Reprograms Tumor-Associated Macrophages and Stimulates T-cell Infiltration in the Sarcoma Microenvironment. Mol Cancer Ther. 2021;20(8):1388–1399. doi:10.1158/1535-7163.MCT-20-0591
  • Henry RJ, Ritzel RM, Barrett JP, et al. Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. J Neurosci. 2020;40(14):2960–2974. doi:10.1523/JNEUROSCI.2402-19.2020
  • Chokr SM, Milinkeviciute G, Jimenez GA, Abubakr H, Cramer KS. Long-term microglia depletion impairs synapse elimination and auditory brainstem function. Sci Rep. 2022;12(1):18521. doi:10.1038/s41598-022-23250-5
  • Van Zeller M, Sebastião AM, Valente CA. Microglia Depletion from Primary Glial Cultures Enables to Accurately Address the Immune Response of Astrocytes. Biomolecules. 2022;12(5):666. doi:10.3390/biom12050666
  • Qiu S, Palavicini JP, Wang J, et al. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment. Mol Neurodegener. 2021;16(1):64. doi:10.1186/s13024-021-00488-7
  • Elmore MR, Najafi AR, Koike MA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82(2):380–397. doi:10.1016/j.neuron.2014.02.040
  • Catorce MN, Gevorkian G. LPS-induced Murine Neuroinflammation Model: main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Curr Neuropharmacol. 2016;14(2):155–164. doi:10.2174/1570159x14666151204122017
  • Cheng J, Dong Y, Ma J, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci Adv. 2021;7(35):eabe3600. doi:10.1126/sciadv.abe3600
  • Chakravarty S, Herkenham M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci. 2005;25:1788–1796. doi:10.1523/JNEUROSCI.4268-04.2005
  • Kenkhuis B, Somarakis A, Kleindouwel LRT, van Roon-Mom WMC, Höllt T, van der Weerd L. Co-expression patterns of microglia markers iba-1, TMEM119 and P2RY12 in Alzheimer’s disease. Neurobiol Dis. 2022;167:105684. doi:10.1016/j.nbd.2022.105684
  • Kondo S, Kohsaka S, Okabe S. Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo. Mol Brain. 2011;4:27. doi:10.1186/1756-6606-4-27
  • Du Y, Brennan FH, Popovich PG, Zhou M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia. 2022;70(7):1359–1379. doi:10.1002/glia.24179
  • Guo M, Hao Y, Feng Y, et al. Microglial Exosomes in Neurodegenerative Disease. Front Mol Neurosci. 2021;14:630808. doi:10.3389/fnmol.2021.630808
  • Wan T, Huang Y, Gao X, Wu W, Guo W. Microglia Polarization: a Novel Target of Exosome for Stroke Treatment. Front Cell Dev Biol. 2022;10:842320. doi:10.3389/fcell.2022.842320
  • Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson’s disease. J Chem Neuroanat. 2020;104:101752. doi:10.1016/j.jchemneu.2020.101752
  • Yadav SK, Rai SN, Singh SP. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J Chem Neuroanat. 2017;80:1–10. doi:10.1016/j.jchemneu.2016.11.009
  • Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: an Update. Biomedicines. 2021;9(10):1284. doi:10.3390/biomedicines9101284
  • Rai SN, Dilnashin H, Birla H, et al. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox Res. 2019;35(3):775–795. doi:10.1007/s12640-019-0003-y
  • Ramakrishna K, Nalla LV, Naresh D, et al. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: current Status and Future Perspective. Diseases. 2023;11(3):89. doi:10.3390/diseases11030089
  • Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat. 2016;71:41–49. doi:10.1016/j.jchemneu.2015.12.002