161
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Pyroptosis-Related Gene Signature Predicts Prognosis and Response to Immunotherapy and Medication in Pediatric and Young Adult Osteosarcoma Patients

, &
Pages 417-445 | Received 17 Sep 2023, Accepted 21 Dec 2023, Published online: 19 Jan 2024

References

  • Hameed M, Mandelker D. Tumor syndromes predisposing to osteosarcoma. Adv Anat Pathol. 2018;25(4):217–222. doi:10.1097/PAP.0000000000000190
  • Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21:vii320–vii325. doi:10.1093/annonc/mdq276
  • Isakoff MS, Bielack SS, Meltzer P, et al. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029–3035. doi:10.1200/JCO.2014.59.4895
  • Meazza C, Scanagatta P. Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev Anticancer Ther. 2016;16(5):543–556. doi:10.1586/14737140.2016.1168697
  • Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243(1):206–214. doi:10.1111/j.1600-065X.2011.01044.x
  • Robinson N, Ganesan R, Hegedűs C, et al. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019;26:101239. doi:10.1016/j.redox.2019.101239
  • Bortoluci KR, Medzhitov R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci. 2010;67(10):1643–1651. doi:10.1007/s00018-010-0335-5
  • Li J, Anraku Y, Kataoka K. Self‐boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew Chem. 2020;132(32):13628–13632. doi:10.1002/ange.202004180
  • Yang M, Zheng H, Su Y, et al. Novel pyroptosis-related lncRNAs and ceRNAs predict osteosarcoma prognosis and indicate immune microenvironment signatures. Heliyon. 2023;9(11):e21503. doi:10.1016/j.heliyon.2023.e21503
  • Zhang J, Deng J, Ding R, et al. Identification of pyroptosis-related genes and long non-coding RNAs signatures in osteosarcoma. Cancer Cell Int. 2022;22(1):322. doi:10.1186/s12935-022-02729-1
  • Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27(9):673–684. doi:10.1016/j.tcb.2017.05.005
  • Kolb R, Liu GH, Janowski AM, et al. Inflammasomes in cancer: a double-edged sword. Protein Cell. 2014;5(1):12–20. doi:10.1007/s13238-013-0001-4
  • Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415–420. doi:10.1038/s41586-020-2071-9
  • Xi G, Gao J, Wan B, et al. GSDMD is required for effector CD8+ T cell responses to lung cancer cells. Int Immunopharmacol. 2019;74:105713. doi:10.1016/j.intimp.2019.105713
  • De Schutter E, Croes L, Ibrahim J, et al. GSDME and its role in cancer: from behind the scenes to the front of the stage. Int J Cancer. 2021;148(12):2872–2883. doi:10.1002/ijc.33390
  • Han J, Hu Y, Ding S, et al. The analysis of the pyroptosis-related genes and hub gene TP63 ceRNA axis in osteosarcoma. Front Immunol. 2022;13:974916. doi:10.3389/fimmu.2022.974916
  • Ternès N, Rotolo F, Michiels S. Empirical extensions of the LASSO penalty to reduce the false discovery rate in high-dimensional Cox regression models. Stat Med. 2016;35(15):2561–2573. doi:10.1002/sim.6927
  • GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213. doi:10.1038/nature24277
  • Kassambara A, Kosinski M, Biecek P, et al. Package ‘survminer’. Boston, MA: CRAN; 2021. Available from: https://cran.r-project.org/web/packages/survminer/survminer.pdf. Accessed June 15, 2022.
  • Campanacci M, Bertoni F, Bacchini P. Bone and Soft Tissue Tumors. New York, NY: Springer-Verlag; 1990.
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587.e29. doi:10.1016/j.cell.2021.04.048
  • Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–1296. doi:10.1038/s41592-019-0619-0
  • Choudhary S, Satija R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 2022;23(1):27. doi:10.1186/s13059-021-02584-9
  • Ahlmann-Eltze C, Huber W. glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data. Bioinformatics. 2021;36(24):5701–5702. doi:10.1093/bioinformatics/btaa1009
  • Yoshida K, Bartel A. tableone: create”Table 1” to describe baseline characteristics with or without propensity score weights; 2022. Available from https://github.com/kaz-yos/tableone. Accessed July 30, 2022.
  • Wang Q, Liu Q, Qi S, et al. Comprehensive pan-cancer analyses of pyroptosis-related genes to predict survival and immunotherapeutic outcome. Cancers. 2022;14(1):237. doi:10.3390/cancers14010237
  • Karki R, Kanneganti T-D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 2019;19(4):197–214. doi:10.1038/s41568-019-0123-y
  • Xia X, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis. 2019;10(9):650. doi:10.1038/s41419-019-1883-8
  • Wang B, Yin Q. AIM2 inflammasome activation and regulation: a structural perspective. J Struct Biol. 2017;200(3):279–282. doi:10.1016/j.jsb.2017.08.001
  • Man SM, Kanneganti T-D. Regulation of inflammasome activation. Immunol Rev. 2015;265(1):6–21. doi:10.1111/imr.12296
  • Dong Z, Bian L, Wang M, et al. Identification of a pyroptosis-related gene signature for prediction of overall survival in lung adenocarcinoma. J Oncol. 2021;2021:6365459. doi:10.1155/2021/6365459
  • Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Discov. 2021;7(1):71. doi:10.1038/s41420-021-00451-x
  • Gómez-Rubio V. ggplot2-elegant graphics for data analysis. J Stat Softw. 2017;77:1–3.
  • Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. doi:10.1093/nar/gkac1000
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi:10.1093/nar/gkaa1074
  • Charles S, Natarajan J. Integrated regulatory network based on lncRNA-miRNA-mRNA-TF reveals key genes and sub-networks associated with dilated cardiomyopathy. Comput Biol Chem. 2021;92:107500. doi:10.1016/j.compbiolchem.2021.107500
  • Keenan AB, Torre D, Lachmann A, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47(W1):W212–W224. doi:10.1093/nar/gkz446
  • Pedersen TL. A grammar of graphics for relational data; 2023. Available from https://ggraph.data-imaginist.com/. Accessed March 14, 2023.
  • Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–1573. doi:10.1093/bioinformatics/btq170
  • Therneau TM, Grambsch PM. The Cox model. In: Modeling Survival Data: Extending the Cox Model. New York: Springer New York; 2000:39–77.
  • Hothorn T, Hornik K, van de Wiel MA, et al. A lego system for conditional inference. Am Stat. 2006;60(3):257–263. doi:10.1198/000313006X118430
  • De Jay N, Papillon-Cavanagh S, Olsen C, et al. mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics. 2013;29(18):2365–2368. doi:10.1093/bioinformatics/btt383
  • Kuhn M. Package ‘caret’. Boston, MA: CRAN; 2020. Available from: https://cran.r-project.org/web/packages/caret/caret.pdf. Accessed June 15, 2022.
  • Lewis JE, Kemp ML. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat Commun. 2021;12(1):2700. doi:10.1038/s41467-021-22989-1
  • Greenwell B. Package ‘fastshap’. Boston, MA: CRAN;2023. Available from: https://cran.r-project.org/web/packages/fastshap/fastshap.pdf. Accessed June 15, 2022.
  • Mayer M, Stando A. Package ‘shapviz’. Boston, MA: CRAN;2023. Available from: https://cran.r-project.org/web/packages/shapviz/shapviz.pdf. Accessed June 15, 2022.
  • Lang M, Binder M, Richter J, et al. mlr3: a modern object-oriented machine learning framework in R. J Open Source Softw. 2019;4(44):1903. doi:10.21105/joss.01903
  • Sonabend R, Király FJ, Bender A, et al. mlr3proba: an R package for machine learning in survival analysis. Bioinformatics. 2021;37(17):2789–2791.
  • Lang M, Schratz P. mlr3verse: easily install and load the ‘mlr3’ package family. 2023. Available from https://github.com/mlr-org/mlr3verse. Accessed July 15, 2023.
  • Sonabend R, Schratz P, Fischer S. mlr3extralearners; 2023. Available from https://github.com/mlr-org/mlr3extralearners. Accessed July 15, 2023.
  • Kuitunen I, Ponkilainen VT, Uimonen MM, et al. Testing the proportional hazards assumption in cox regression and dealing with possible non-proportionality in total joint arthroplasty research: methodological perspectives and review. BMC Musculoskelet Disord. 2021;22(1):489. doi:10.1186/s12891-021-04379-2
  • Smith G. Step away from stepwise. J Big Data. 2018;5(1):32. doi:10.1186/s40537-018-0143-6
  • Li J, Lu X, Cheng K, et al. Package ‘StepReg’. Boston, MA: CRAN; 2022. Available from: https://cran.r-project.org/web/packages/StepReg/StepReg.pdf. Accessed June 15, 2022.
  • Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ. 2015;351:h3868. doi:10.1136/bmj.h3868
  • Frank E, Harrell J. Package ‘Hmisc’; 2023. Available from https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf. Accessed July 3, 2022.
  • Gu Z, Gu L, Eils R, et al. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2812. doi:10.1093/bioinformatics/btu393
  • Gu Z. Complex heatmap visualization. iMeta. 2022;1(3):e43.
  • Budczies J, Klauschen F, Sinn BV, et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862. doi:10.1371/journal.pone.0051862
  • Blanche P, Dartigues J-F, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32(30):5381–5397. doi:10.1002/sim.5958
  • Semenkovich TR, Yan Y, Subramanian M, et al. A clinical nomogram for predicting node-positive disease in esophageal cancer. Ann Surg. 2021;273(6):e214–221. doi:10.1097/sla.0000000000003450
  • Kronek L-P, Reddy A. Logical analysis of survival data: prognostic survival models by detecting high-degree interactions in right-censored data. Bioinformatics. 2008;24(16):i248–i253. doi:10.1093/bioinformatics/btn265
  • Peters A, Hothorn T, Lausen B. ipred: improved predictors. R News. 2002;2(2):33–36.
  • Canty AJ. Resampling methods in R: the boot package. Newsl R Proj. 2002;2(3):2–7.
  • Lazic SE. Medical risk prediction models: with ties to machine learning. J R Stat Soc Ser a Stat Soc. 2022;185(1):425. doi:10.1111/rssa.12756
  • Frank E, Harrell J. rms: regression modeling strategies; 2023. Available from https://CRAN.R-project.org/package=rms. Accessed July 3, 2022.
  • Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests for survival analysis using prediction error curves. J Stat Softw. 2012;50(11):1–23. doi:10.18637/jss.v050.i11
  • Vickers AJ, Cronin AM, Elkin EB, et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Medical Informatics and Decision Making. 2008;8(1):53. doi:10.1186/1472-6947-8-53
  • Cao J, Zhang S. A Bayesian extension of the hypergeometric test for functional enrichment analysis. Biometrics. 2014;70(1):84–94. doi:10.1111/biom.12122
  • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  • Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. doi:10.1016/j.xinn.2021.100141
  • Sato N, Tamada Y, Yu G, et al. CBNplot: bayesian network plots for enrichment analysis. Bioinformatics. 2022;38(10):2959–2960. doi:10.1093/bioinformatics/btac175
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102
  • Ieva K, Juozas G. aPEAR: an R package for autonomous visualisation of pathway enrichment networks. bioRxiv. 2023. doi:10.1101/2023.03.28.534514
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi:10.1038/nmeth.3337
  • Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother. 2018;67(7):1031–1040. doi:10.1007/s00262-018-2150-z
  • Kassambara A. Package ‘rstatix’. Boston, MA: CRAN;2020. Available from: https://cran.r-project.org/web/packages/rstatix/rstatix.pdf. Accessed 15, June 2022.
  • Miao YR, Zhang Q, Lei Q, et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Adv Sci. 2020;7(7):1902880. doi:10.1002/advs.201902880
  • Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–1214. doi:10.1016/j.cell.2015.05.002
  • Wang C, Sun D, Huang X, et al. Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol. 2020;21(1):198. doi:10.1186/s13059-020-02116-x
  • Zhou Y, Yang D, Yang Q, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 2020;11(1):6322. doi:10.1038/s41467-020-20059-6
  • Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014;9(9):e107468. doi:10.1371/journal.pone.0107468
  • Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–575. doi:10.1038/nature11005
  • R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing;2022. Available from: https://www.R-project.org/. Accessed June 15, 2022.
  • Clarke E, Sherrill-Mix S, Dawson C. Package ‘ggbeeswarm’. Boston, MA: CRAN;2023. Available from: https://cran.r-project.org/web/packages/ggbeeswarm/ggbeeswarm.pdf. Accessed June 15, 2022.
  • Ramos B, Pereira T, Moranguinho J, et al. An interpretable approach for lung cancer prediction and subtype classification using gene expression. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:1707–1710. doi:10.1109/embc46164.2021.9630775
  • Cao M, Zhang J, Xu H, et al. Identification and development of a novel 4-gene immune-related signature to predict osteosarcoma prognosis. Front Mol Biosci. 2020;7:608368. doi:10.3389/fmolb.2020.608368
  • Gerds TA, Kattan MW, Schumacher M, et al. Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med. 2013;32(13):2173–2184. doi:10.1002/sim.5681
  • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26(6):565–574.
  • Stiller CA, Trama A, Serraino D, et al. Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. European Journal of Cancer. 2013;49(3):684–695. doi:10.1016/j.ejca.2012.09.011
  • Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019;26(1):99–114. doi:10.1038/s41418-018-0212-6
  • Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15(3):R47. doi:10.1186/gb-2014-15-3-r47
  • Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–1121. doi:10.1038/s41423-020-00630-3
  • Bittner ZA, Schrader M, George SE, et al. Pyroptosis and its role in SARS-CoV-2 infection. Cells. 2022;11(10):1717. doi:10.3390/cells11101717
  • Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016;26(13):R568–R572. doi:10.1016/j.cub.2016.02.019
  • Mi S, Lee X, Hu Y, et al. Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nat Med. 2011;17(7):816–821. doi:10.1038/nm.2373
  • Roufas C, Georgakopoulos-Soares I, Zaravinos A. Distinct genomic features across cytolytic subgroups in skin melanoma. Cancer Immunol Immunother. 2021;70(11):3137–3154. doi:10.1007/s00262-021-02918-3
  • Saeki N, Usui T, Aoyagi K, et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 2009;48(3):261–271. doi:10.1002/gcc.20636
  • Yu X, Riley T, Levine AJ. The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 2009;276(8):2201–2212. doi:10.1111/j.1742-4658.2009.06949.x
  • Lespagnol A, Duflaut D, Beekman C, et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 2008;15(11):1723–1733. doi:10.1038/cdd.2008.104
  • Huang Y, Wang C, Tang D, et al. Development and validation of nomogram-based prognosis tools for patients with extremity osteosarcoma: a SEER population study. J Oncol. 2022;2022:9053663. doi:10.1155/2022/9053663
  • Munajat I, Zulmi W, Norazman MZ, et al. Tumour volume and lung metastasis in patients with osteosarcoma. J Orthop Surg Res. 2008;16(2):182–185. doi:10.1177/230949900801600211
  • Lou X, Li K, Qian B, et al. Pyroptosis correlates with tumor immunity and prognosis. Commun Biol. 2022;5(1):917. doi:10.1038/s42003-022-03806-x
  • Wu CC, Beird HC, Andrew Livingston J, et al. Immuno-genomic landscape of osteosarcoma. Nat Commun. 2020;11(1):1008. doi:10.1038/s41467-020-14646-w
  • Li X, Luo L, Jiang M, et al. Cocktail strategy for ‘cold’ tumors therapy via active recruitment of CD8+ T cells and enhancing their function. J Control Release. 2021;334:413–426. doi:10.1016/j.jconrel.2021.05.002