122
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

AMPK Signalling Pathway: A Potential Strategy for the Treatment of Heart Failure with Chinese Medicine

, , &
Pages 5451-5464 | Received 11 Oct 2023, Accepted 10 Nov 2023, Published online: 20 Nov 2023

References

  • Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596. doi:10.1161/CIR.0000000000000757
  • Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11. doi:10.15420/cfr.2016:25:2
  • Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association [published correction appears in Circulation. 2022 Sep 6;146(10):e141]. Circulation. 2022;145(8):e153–e639. doi:10.1161/CIR.0000000000001052
  • Niskanen JE, Ohlsson Å, Ljungvall I, et al. Identification of novel genetic risk factors of dilated cardiomyopathy: from canine to human. Genome Med. 2023;15(1):73. doi:10.1186/s13073-023-01221-3
  • Zhou J, Luo Y, Kang X, Bian F, Liu D. The root extract of Scutellaria baicalensis Georgi promotes β cell function and protects from apoptosis by inducing autophagy. J Ethnopharmacol. 2022;284:114790. doi:10.1016/j.jep.2021.114790
  • Burchill LJ, Lee MGY, Nguyen VP, Stout KK. Heart failure in adult congenital heart disease. Cardiol Clin. 2020;38(3):457–469. doi:10.1016/j.ccl.2020.04.010
  • Goldstein D, Frishman WH. Diastolic heart failure: a review of current and future treatment options. Cardiol Rev. 2021;29(2):82–88. doi:10.1097/CRD.0000000000000303
  • Kim AH, Jang JE, Han J. Current status on the therapeutic strategies for heart failure and diabetic cardiomyopathy. Biomed Pharmacother. 2022;145:112463. doi:10.1016/j.biopha.2021.112463
  • MacDonald BJ, Virani SA, Zieroth S, Turgeon R. Heart failure management in 2023: a pharmacotherapy- and lifestyle-focused comparison of current international guidelines. CJC Open. 2023;5(8):629–640. doi:10.1016/j.cjco.2023.05.008
  • Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4):e224. doi:10.1038/emm.2016.16
  • Yan Y, Zhou XE, Xu HE, Melcher K. Structure and physiological regulation of AMPK. Int J Mol Sci. 2018;19(11):3534. doi:10.3390/ijms19113534
  • Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–135. doi:10.1038/nrm.2017.95
  • Sanli T, Steinberg GR, Singh G, Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 2014;15(2):156–169. doi:10.4161/cbt.26726
  • Xiao B, Sanders MJ, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472(7342):230–233. doi:10.1038/nature09932
  • Li X, Liu J, Lu Q, et al. AMPK: a therapeutic target of heart failure-not only metabolism regulation. Biosci Rep. 2019;39(1):BSR20181767. doi:10.1042/BSR20181767
  • Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987. doi:10.3390/ijms21144987
  • Wen Y, Kunjian H, Li O, Xiaoyue C, Yingqiang Z. Mechanism of adenylate-activated protein kinase in the prevention and control of heart failure and progress of intervention in traditional Chinese medicine. Liaoning J Chin Med. 2023;50(04):212–216.
  • Yaqi H, Jianhe L. Progress of Chinese medicine in regulating AMPK signalling pathway for the treatment of myocardial ischemia-reperfusion injury. Chin J Exp Formulas. 2023;29(13):213–221.
  • Yu S, Qian H, Tian D, et al. Linggui Zhugan Decoction activates the SIRT1-AMPK-PGC1α signaling pathway to improve mitochondrial and oxidative damage in rats with chronic heart failure caused by myocardial infarction. Front Pharmacol. 2023;14:1074837. doi:10.3389/fphar.2023.1074837
  • Ge Y, Zhou M, Chen C, Wu X, Wang X. Role of AMPK mediated pathways in autophagy and aging. Biochimie. 2022;195:100–113. doi:10.1016/j.biochi.2021.11.008
  • Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016;26(3):190–201. doi:10.1016/j.tcb.2015.10.013
  • Hardie DG. AMPK--sensing energy while talking to other signaling pathways. Cell Metab. 2014;20(6):939–952. doi:10.1016/j.cmet.2014.09.013
  • Xiao B, Heath R, Saiu P, et al. Structural basis for AMP binding to mammalian AMP -activated protein kinase. Nature. 2007;449(7161):496–500. doi:10.1038/nature06161
  • Hardie DG, Carling D, Gamblin SJ. AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci. 2011;36(9):470–477. doi:10.1016/j.tibs.2011.06.004
  • Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800. doi:10.1016/j.molcel.2017.05.032
  • Timm KN, Tyler DJ. The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc Drugs Ther. 2020;34(2):255–269. doi:10.1007/s10557-020-06941-x
  • Wang Q, Liu S, Zhai A, Zhang B, Tian G. AMPK-mediated regulation of lipid metabolism by phosphorylation. Biol Pharm Bull. 2018;41(7):985–993. doi:10.1248/bpb.b17-00724
  • Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci. 2023;18(1):20220710. doi:10.1515/biol-2022-0710
  • Wu ZZ, Rao M, Xu S, Hu HY, Tang QZ. Coumestrol ameliorates doxorubicin-induced cardiotoxicity via activating AMPKα. Free Radic Res. 2020;54(8–9):629–639. doi:10.1080/10715762.2020.1822525
  • Kurose H. Cardiac fibrosis and fibroblasts. Cells. 2021;10(7):1716. doi:10.3390/cells10071716
  • Díez J, De Boer RA. Management of cardiac fibrosis is the largest unmet medical need in heart failure. Cardiovasc Res. 2022;118(2):e20–e22. doi:10.1093/cvr/cvab228
  • Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–606. doi:10.1016/j.yjmcc.2010.10.033
  • Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–111. doi:10.1083/jcb.122.1.103
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574. doi:10.1007/s00018-013-1349-6
  • Zhang YE. Non-Smad Signaling Pathways of the TGF-beta Family. Cold Spring Harb Perspect Biol. 2017;9(2):647–691. doi:10.1101/cshperspect.a022129
  • Chen R, Feng Y, Wu J, et al. Metformin attenuates angiotensin II-induced TGFbeta1 expression by targeting hepatocyte nuclear factor-4-alpha. Br J Pharmacol. 2018;175(8):1217–1229. doi:10.1111/bph.13753
  • Du J, Guan T, Zhang H, et al. Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Res Commun. 2008;368(2):402–407. doi:10.1016/j.bbrc.2008.01.099
  • Chen X, Li X, Zhang W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-kappaB pathway. Metabolism. 2018;83(256):256–270. doi:10.1016/j.metabol.2018.03.004
  • Oh CM, Ryu D, Cho S, Jang Y. Mitochondrial quality control in the heart: new drug targets for cardiovascular disease. Korean Circ J. 2020;50(5):395–405. doi:10.4070/kcj.2019.0416
  • Gupta A, Chacko VP, Schär M, Akki A, Weiss RG. Impaired ATP kinetics in failing in vivo mouse heart. Circ Cardiovasc Imaging. 2011;4(1):42–50. doi:10.1161/CIRCIMAGING.110.959320
  • Gibbs CL, Loiselle DS. Cardiac basal metabolism. Jpn J Physiol. 2001;51(4):399–426. doi:10.2170/jjphysiol.51.399
  • Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart metabolism in sepsis-induced cardiomyopathy-unusual metabolic dysfunction of the heart. Int J Environ Res Public Health. 2021;18(14):7598. doi:10.3390/ijerph18147598
  • Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555(Pt 1):1–13. doi:10.1113/jphysiol.2003.055095
  • Feng Y, Zhang Y, Xiao H. AMPK and cardiac remodelling. Sci China Life Sci. 2018;61(1):14–23. doi:10.1007/s11427-017-9197-5
  • Ng SM, Neubauer S, Rider OJ. Myocardial Metabolism in Heart Failure. Curr Heart Fail Rep. 2023;20(1):63–75. doi:10.1007/s11897-023-00589-y
  • Yang J, Holman GD. Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem. 2005;280(6):4070–4078. doi:10.1074/jbc.M410213200
  • Wolfgang MJ, Kurama T, Dai Y, et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci U S A. 2006;103(19):7282–7287. doi:10.1073/pnas.0602205103
  • Dyck JR, Lopaschuk GD. AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol. 2006;574(Pt 1):95–112. doi:10.1113/jphysiol.2006.109389
  • Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev. 2006;27(7):728–735. doi:10.1210/er.2006-0037
  • Giguere V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev. 2008;29(6):677–696. doi:10.1210/er.2008-0017
  • Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884S–90. doi:10.3945/ajcn.110.001917
  • Khan SU, Khan SU, Suleman M, et al. Natural allies for heart health: nrf2 activation and cardiovascular disease management [published online ahead of print, 2023 Sep 13]. Curr Probl Cardiol. 2023;49(1 Pt B):102084. doi:10.1016/j.cpcardiol.2023.102084
  • Guo S, Yao Q, Ke Z, Chen H, Wu J, Liu C. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol. 2015;412:85–94. doi:10.1016/j.mce.2015.05.034
  • Xu L, Wang S, Li B, Sun A, Zou Y, Ge J. A protective role of ciglitazone in ox-LDL-induced rat microvascular endothelial cells via modulating PPARγ-dependent AMPK/eNOS pathway. J Cell Mol Med. 2015;19(1):92–102. doi:10.1111/jcmm.12463
  • Junlong W, Huiyu J, Zhihai F, et al. Research progress of Chinese medicine in regulating AMPK signalling pathway against obese type 2 diabetes[J/OL]. Chin J Exp Formulary. 2023:1–9. doi:10.1111/jcmm.12463
  • Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144(12):5179–5183. doi:10.1210/en.2003-0982
  • Barreto-Torres G, Parodi-Rullán R, Javadov S. The role of PPARα in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sci. 2012;13(6):7694–7709. doi:10.3390/ijms13067694
  • Liu XD, Li YG, Wang GY, et al. Metformin protects high glucose-cultured cardiomyocytes from oxidative stress by promoting NDUFA13 expression and mitochondrial biogenesis via the AMPK signaling pathway. Mol Med Rep. 2020;22(6):5262–5270. doi:10.3892/mmr.2020.11599
  • Barreto-Torres G, Hernandez JS, Jang S, et al. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2015;308(7):H749–H758. doi:10.1152/ajpheart.00414.2014
  • Cocco G, Jerie P, Amiet P, Pandolfi S. Inflammation in Heart Failure: known knowns and unknown unknowns. Expert Opin Pharmacother. 2017;18(12):1225–1233. doi:10.1080/14656566.2017.1351948
  • Bazoukis G, Stavrakis S, Armoundas AA. Vagus Nerve Stimulation and Inflammation in Cardiovascular Disease: a State-of-The-Art Review [published online ahead of print, 2023 Sep 18]. J Am Heart Assoc. 2023;12(19):e030539. doi:10.1161/JAHA.123.030539
  • Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: from Inflammation to Fibrosis. Circ Res. 2016;119(1):91–112. doi:10.1161/CIRCRESAHA.116.303577
  • Koyani CN, Plastira I, Sourij H, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158:104870. doi:10.1016/j.phrs.2020.104870
  • Zhang Y, He Y, Liu S, et al. SGLT2 inhibitors in aging-related cardiovascular disease: a review of potential mechanisms [published online ahead of print, 2023 Aug 24]. Am J Cardiovasc Drugs. 2023. doi:10.1007/s40256-023-00602-8
  • Meng Z, Liu X, Li T, et al. The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int Immunopharmacol. 2021;94:107492. doi:10.1016/j.intimp.2021.107492
  • Zhang L, Tian J, Diao S, Zhang G, Xiao M, Chang D. GLP-1 receptor agonist liraglutide protects cardiomyocytes from IL-1β-induced metabolic disturbance and mitochondrial dysfunction. Chem Biol Interact. 2020;332:109252. doi:10.1016/j.cbi.2020.109252
  • Pei C, Zhang Y, Wang P, et al. Berberine alleviates oxidized low-density lipoprotein-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways. Phytother Res. 2019;33(2):294–308. doi:10.1002/ptr.6217
  • Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19(1):62. doi:10.1186/s12933-020-01041-4
  • Kubli DA, Gustafsson AB. Cardiomyocyte health: adapting to metabolic changes through autophagy. Trends Endocrinol Metab. 2014;25(3):156–164. doi:10.1016/j.tem.2013.11.004
  • Gurusamy N, Lekli I, Mukherjee S, et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res. 2010;86(1):103–112. doi:10.1093/cvr/cvp384
  • Li Y, Chen C, Yao F, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys. 2014;558(79):79–86. doi:10.1016/j.abb.2014.06.023
  • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–226. doi:10.1016/j.molcel.2008.03.003
  • Zheng Q, Zhao K, Han X, et al. Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. Biochim Biophys Acta. 2015;1852(2):332–342. doi:10.1016/j.bbadis.2014.04.023
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–141. doi:10.1038/ncb2152
  • Liu L, Wang C, Lin Y, et al. Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep. 2016;14(1):111–120. doi:10.3892/mmr.2016.5279
  • Schips TG, Wietelmann A, Hohn K, et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc Res. 2011;91(4):587–597. doi:10.1093/cvr/cvr144
  • Wang S, Binder P, Fang Q, et al. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol. 2018;175(8):1293–1304. doi:10.1111/bph.13888
  • Wei J, Fang D. Endoplasmic reticulum stress signaling and the pathogenesis of hepatocarcinoma. Int J Mol Sci. 2021;22(4):1799. doi:10.3390/ijms22041799
  • Huang J, Pan H, Wang J, et al. Unfolded protein response in colorectal cancer. Cell Biosci. 2021;11(1):26. doi:10.1186/s13578-021-00538-z
  • Okada K, Minamino T, Tsukamoto Y, et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation. 2004;110(6):705–712. doi:10.1161/01.CIR.0000137836.95625.D4
  • Zhuo XZ, Wu Y, Ni YJ, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18(7):800–810. doi:10.1007/s10495-013-0843-5
  • Xu L, Cai Y, Wang Y, Xu C. Meteorin-Like (METRNL) Attenuates Myocardial Ischemia/Reperfusion Injury-Induced Cardiomyocytes Apoptosis by Alleviating Endoplasmic Reticulum Stress via Activation of AMPK-PAK2 Signaling in H9C2 Cells. Med Sci Monit. 2020;26:e924564. doi:10.12659/MSM.924564
  • Park HW, Park H, Ro SH, et al. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun. 2014;5:4233. doi:10.1038/ncomms5233
  • Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052–3059. doi:10.7150/thno.54113
  • Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel). 2021;10(5):667. doi:10.3390/antiox10050667
  • Park TJ, Park JH, Lee GS, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 2019;10(11):835. doi:10.1038/s41419-019-2061-8
  • Tonelli C, Chio IIC, Tuveson DA. Transcriptional Regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–1745. doi:10.1089/ars.2017.7342
  • Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38(4):769–789. doi:10.1080/03602530600971974
  • Lu H, Xiao H, Dai M, et al. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol. 2022;60(1):38–45. doi:10.1080/13880209.2021.2007269
  • Wu Y, Fan Z, Chen Z, et al. Astragaloside IV protects human cardiomyocytes from hypoxia/reoxygenation injury by regulating miR-101a. Mol Cell Biochem. 2020;470(1–2):41–51. doi:10.1007/s11010-020-03743-5
  • Xia ML, Xie XH, Ding JH, et al. Astragaloside IV inhibits astrocyte senescence: implication in Parkinson’s disease. J Neuroinflammation. 2020;17(1):105. doi:10.1186/s12974-020-01791-8
  • Song J, Yangqian H, Jian L, et al. Effects of astragalus polysaccharide on myocardial AMPK activity and FFA metabolism in rats with chronic heart failure. Chin J Pathophysiol. 2015;31(01):28–32.
  • Xinwei R, Weiguo Z, Yuzhen N. Mechanism of action of astragaloside on mitochondrial autophagy in rat cardiomyocytes with acute heart failure via CaMkkβ/AMPK pathway. J Med Forum. 2023;44(09):41–46.
  • Hao-yu L, Xing-jun X, Xue-han L, et al. Effects of total flavonoids of Luo Han Guo on antioxidant capacity and inflammatory response in mice with chronic sleep deprivation. J Animal Nutr. 2023;35(07):4668–4677.
  • Weibin M, Mingming G, Ting L, et al. Effects of Rosmarinus officinalis flavonoids on myocardial energy metabolising enzymes and PPARα mRNA expression in exercising rats. Chin J Exp Formulas. 2013;19(14):203–208.
  • Luoqi Z, Sen L, Ruyi C, et al. Interaction of ginsenosides with MAPK signalling pathway based on SPRi technology and molecular docking. Chin Patent Med. 2023;45(09):3123–3127.
  • Kong HL, Hou AJ, Liu NN, Chen BH, Dai SN, Huang HT. The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart. Iran J Basic Med Sci. 2018;21(7):731–737. doi:10.22038/IJBMS.2018.24002.6016
  • Qingrui S, Xiaojun Z, Weide Z, Houang L, Jianzhe L. Progress of cardioprotective effect and mechanism of action of paeoniflorin. Zhongnan Pharmacol. 2023;21(09):2386–2391.
  • Yuqin G, Jiping H, Guoping Z. Protective effect of AMPKα activation by paeoniflorin pretreatment on myocardial ischaemia-reperfusion injury in in vivo rats. Hainan Med. 2015;26(15):2185–2189.
  • Keran F, Weixia L, Xiaoyan W, et al. Predictive analyses of chemical constituents, pharmacological effects and their quality markers (Q-Marker) of Salvia miltiorrhiza. Chin Herbal Med. 2022;53(02):609–618.
  • Zhang X, Wang Q, Wang X, et al. Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway. Biomed Pharmacother. 2019;112:108599. doi:10.1016/j.biopha.2019.108599
  • Xiaolian L, Jianlian L, Wenli L, et al. Progress of pharmacological effects and clinical application of total saponins of Panax ginseng. Hubei Agri Sci. 2021;60(06):15–19.
  • Wang D, Lv L, Xu Y, et al. Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy. Biomed Pharmacother. 2021;136:111287. doi:10.1016/j.biopha.2021.111287
  • Zhi-Cong Z, Feng-Hsia L, Yuan-Gui Z, et al. Mechanism study of berberine-mediated LncRNA-MIAT regulation of autophagy to inhibit cardiomyocyte hypertrophy. World Sci Technol Modern Trad Chin Med. 2019;21(10):2113–2120.
  • Zhou B, Zhang J, Chen Y, et al. Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY). 2022;14(8):3617–3632. doi:10.18632/aging.204033
  • Ma ZG, Dai J, Zhang WB, et al. Protection against cardiac hypertrophy by geniposide involves the GLP-1 receptor / AMPKα signalling pathway. Br J Pharmacol. 2016;173(9):1502–1516. doi:10.1111/bph.13449
  • De-You J, Wan-Qiu Z, Jie-Ru H. Research progress of Ling Gui Zhu Gan Tang. J Chin Med. 2021;36(12):2562–2567.
  • Peng Z, Jinling J. Progress of clinical application and pharmacological effects of Ling Gui Zhu Gan Tang in the prevention and treatment of chronic heart failure. Shizhen Guojian Guojian. 2018;29(09):2231–2233.
  • Juan Y, Rui D, Xiangyang L, et al. Effects of Ling Gui Zhu Gan Tang on mitochondrial fission-fusion and Sirt3/AMPK signalling pathway in post-infarction chronic heart failure rats. Chin J Exp Formulas. 1–9. doi:10.13422/j.cnki.syfjx.20231004
  • Jiaming W, Yuying L, Jialing L, et al. Effects of effective components of Yixintai on CaN in myocardial tissue of rabbits with chronic heart failure. Chin Pharmacol Bull. 2021;37(10):1457–1463.
  • Yun T, Yang L. Effects of Yixintai granules on myocardial AMPK protein expression in rats with chronic heart failure with cardiac qi deficiency and blood stasis and water stagnation. Chin Med Introd. 2021;27(03):19–22.
  • Yun T, Zhi-Hua G, Tong-Yu Z, et al. Effects of Yixintai alcoholic extract on angiotensin II-induced Bax and Bcl-2 protein expression in rabbit cardiac fibroblasts. China J Trad Chin Med Infor. 2021;28(08):83–86.
  • Xian SX, Yang ZQ, Ren PH, et al. Effect of yangxinkang tablets on chronic heart failure: a multi-center randomized double-blind placebo-controlled trial. Chin J Integr Med. 2015;21(10):733–742. doi:10.1007/s11655-015-2170-x
  • Ren PH, Zhang ZM, Wang P, Zhu HP, Li ZQ. Yangxinkang tablet protects against cardiac dysfunction and remodelling after myocardial infarction in rats through inhibition of AMPK/mTOR-mediated autophagy. Pharm Biol. 2020;58(1):321–327. doi:10.1080/13880209.2020.1748662
  • Gang S, Jianling Z, Zhiyi W, et al. Clinical study of heart failure ning for treating chronic heart failure of cardiac and renal yang deficiency type. Shizhen Guomao Guomao. 2017;28(11):2686–2687.
  • Jinhong W, Gang S. Observation on the efficacy of heart failure ning on chronic moderate and severe heart failure. Liaoning J Chin Med. 2014;41(12):2613–2614.
  • Yuanli H, Zhenxiang A, Ruilin Y, et al. Effects of heart failure granules on transforming growth factor β1 in myocardial tissue of rats with chronic heart failure. J Guiyang Coll Trad Chin Med. 2016;38(05):23–27.
  • Zhen Z, Yongping Z. Effects of different dosage forms of Heart Failure Ning on haemodynamics. Chin J Exp Formulas. 2014;20(13):169–171.
  • Yuanli H, Zhenxiang A, Ruilin Y, Lei G. Effects of Heart Failure Ning Combination on myocardial AMPK and PPARα in rats with chronic heart failure. New Chin Med Clin Pharmacol. 2020;31(03):287–293.
  • Chenghao C, Lihua H, Huichao Z. Pharmacological mechanism of Wen Yang Yi Qi formula for improving post-infarction heart failure in rats based on AMPK-mediated mitochondrial autophagy analysis. Chin J Comp Med. 2019;29(12):39–44.
  • Xiaomin H, Zhengxu F, Meiying H. Clinical observation on the treatment of chronic heart failure with tonifying yang and returning five soups. Guangming Trad Chin Med. 2021;36(15):2551–2553.
  • Zhen W, Jiebai L, Xin D, Xiaoxu S. Effects of tonifying Yang and restoring Wu Tang on myocardial mitochondrial energy metabolism and AMPK/PPARα signalling pathway in rats with diastolic heart failure. Chin J Exp Formulas. 2019;25(09):12–17.
  • Shihai Y, Huihua F, Lei T, Qiyi L. Exploring the mechanism of improving myocardial mitochondrial damage in chronic heart failure by shenkui tongwei granules based on AMPK-mt TFA-PINK1 signalling. New Chin Med Clin Pharmacol. 2018;29(06):738–743.
  • Fan Z, Wei F, Guangli Z. Effects of ginseng and cardiotonic combination on AMPK-PGC-1α pathway of myocardial energy metabolism in heart failure rats. Zhejiang J Integr Chin West Med. 2018;28(10):834–837.
  • Wei Z, Yuanwang Y, Shuzhen Z, et al. Effects of ginseng and ligusticum formula on myocardial energy metabolism in rats with heart failure model after myocardial infarction. J Changchun Univ Trad Chin Med. 2018;34(03):415–418.
  • Xianwei W, Wenfeng S, Xiaoxiao Y, et al. Effects of Huanglian detoxification soup on adenylate-activated protein kinase and intercellular adhesion molecule-1 in inflammation-injured endothelial cells. J Xinxiang Med Coll. 2014;31(07):513–516.
  • Qiong H, Shanning Y, Lijun J. Experimental study on the protective effect of ginseng and sorrel injection on chronic heart failure in rats. Mod Clin Med. 2012;38(03):173–175.