74
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Is Lipopolysaccharide-Induced Lipid Metabolism Disorder in Testis of Rats a Consequence of Plasma Lipid Changes?

, ORCID Icon, &
Pages 765-776 | Received 24 Sep 2023, Accepted 13 Jan 2024, Published online: 07 Feb 2024

References

  • Syriou V, Papanikolaou D, Kozyraki A, Goulis DG. Cytokines and male infertility. Eur Cytokine Netw. 2018;29(3):73–82. doi:10.1684/ecn.2018.0412
  • Reddy MM, Mahipal SV, Subhashini J, et al. Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod Toxicol. 2006;22(3):493–500. doi:10.1016/j.reprotox.2006.03.003
  • O’Bryan GO, Nikolic-Paterson DJ, et al. Cytokine profiles in the testes of rats treated with lipopolysaccharide reveal localized suppression of inflammatory responses. Am J Physiol Regulatory Integr Comp Physiol. 2005;288(6):56.
  • Sahnoun S, Sellami A, Chakroun N, et al. Human sperm Toll-like receptor 4 (TLR4) mediates acrosome reaction, oxidative stress markers, and sperm parameters in response to bacterial lipopolysaccharide in infertile men. J Assist Reprod Genet. 2017;34(8):1067–1077. doi:10.1007/s10815-017-0957-8
  • Kwiatkowska K, Ciesielska A. Lipid-mediated regulation of pro-inflammatory responses induced by lipopolysaccharide. Postepy Biochem. 2018;64(3):175–182. doi:10.18388/pb.2018_129
  • Plociennikowska A, Zdioruk MI, Traczyk G, Swiatkowska A, Kwiatkowska K. LPS-induced clustering of CD14 triggers generation of PI(4,5)P2. J Cell Sci. 2015;128(22):4096–4111. doi:10.1242/jcs.173104
  • Plociennikowska A, Hromada-Judycka A, Dembinska J, Roszczenko P, Ciesielska A, Kwiatkowska K. Contribution of CD14 and TLR4 to changes of the PI(4,5)P2 level in LPS-stimulated cells. J Leukoc Biol. 2016;100(6):1363–1373. doi:10.1189/jlb.2VMA1215-577R
  • Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol. 2016;785:24–35. doi:10.1016/j.ejphar.2016.04.024
  • Collodel G, Moretti E, Noto D, Iacoponi F, Signorini C. Fatty Acid Profile and Metabolism Are Related to Human Sperm Parameters and Are Relevant in Idiopathic Infertility and Varicocele. Mediators Inflamm. 2020;2020:3640450. doi:10.1155/2020/3640450
  • Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–1083. doi:10.1038/nprot.2011.335
  • Long SH, Yu ZQ, Shuai L, et al. The hypoglycemic effect of the kelp on diabetes mellitus model induced by alloxan in rats. Int J Mol Sci. 2012;13(3):3354–3365. doi:10.3390/ijms13033354
  • Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91(3):805–811. doi:10.1016/j.fertnstert.2008.01.022
  • Pakpahan C, Rezano A, Margiana R, Amanda B, Agustinus A, Darmadi D. The Association Between Lipid Serum and Semen Parameters: a Systematic Review. Reprod Sci. 2022;30(3):761–771. doi:10.1007/s43032-022-01040-8
  • Unsal V, Kolukcu E, Gevrek F, Firat F. Sinapic acid reduces ischemia/reperfusion injury due to testicular torsion/detorsion in rats. Andrologia. 2021;53(8):e14117. doi:10.1111/and.14117
  • Wang J, Christison TT, Misuno K, et al. Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with Orbitrap mass spectrometry. Anal Chem. 2014;86(10):5116–5124. doi:10.1021/ac500951v
  • Wiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem. 2008;80(1):115–122. doi:10.1021/ac0713510
  • O’Bryan MK, Schlatt S, Phillips DJ, de Kretser DM, Hedger MP. Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology. 2000;141(1):238–246. doi:10.1210/endo.141.1.7240
  • Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev. 1995;42(3):334–346. doi:10.1002/mrd.1080420311
  • Wood PL, Scoggin K, Ball BA, Troedsson MH, Squires EL. Lipidomics of equine sperm and seminal plasma: identification of amphiphilic (O-acyl)-omega-hydroxy-fatty acids. Theriogenology. 2016;86(5):1212–1221. doi:10.1016/j.theriogenology.2016.04.012
  • Van Tran L, Malla BA, Kumar S, Tyagi AK. Polyunsaturated Fatty Acids in Male Ruminant Reproduction - A Review. Asian-Australas J Anim Sci. 2017;30(5):622–637. doi:10.5713/ajas.15.1034
  • Li Y, Zhu J, Zhao X, et al. Oral Lycopene Administration Attenuates Inflammation and Oxidative Stress by Regulating Plasma Lipids in Rats with Lipopolysaccharide-Induced Epididymitis. J Inflamm Res. 2022;15:6517–6531. doi:10.2147/JIR.S380785
  • Rejraji H, Vernet P, Drevet JR. GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Mol Reprod Dev. 2002;63(1):96–103. doi:10.1002/mrd.10136
  • Tavilani H, Goodarzi MT, Doosti M, et al. Relationship between seminal antioxidant enzymes and the phospholipid and fatty acid composition of spermatozoa. Reprod Biomed Online. 2008;16(5):649–656. doi:10.1016/S1472-6483(10)60478-6
  • Xu Y, Lu H, Wang Y, Zhang Z, Wu Q. Comprehensive metabolic profiles of seminal plasma with different forms of male infertility and their correlation with sperm parameters. J Pharm Biomed Anal. 2020;177:112888. doi:10.1016/j.jpba.2019.112888
  • Qu N, Ogawa Y, Kuramasu M, Nagahori K, Sakabe K, Itoh M. Immunological microenvironment in the testis. Reprod Med Biol. 2020;19(1):24–31. doi:10.1002/rmb2.12293
  • Al-Mekhlafi A, Suhs KW, Schuchardt S, et al. Elevated Free Phosphatidylcholine Levels in Cerebrospinal Fluid Distinguish Bacterial from Viral CNS Infections. Cells. 2021;10(5):1115. doi:10.3390/cells10051115
  • Arshad H, Alfonso JCL, Franke R, et al. Decreased plasma phospholipid concentrations and increased acid sphingomyelinase activity are accurate biomarkers for community-acquired pneumonia. J Transl Med. 2019;17(1):365. doi:10.1186/s12967-019-2112-z