193
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Revolutionizing Treatment Strategies for Autoimmune and Inflammatory Disorders: The Impact of Dipeptidyl-Peptidase 4 Inhibitors

, , , , ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1897-1917 | Received 18 Oct 2023, Accepted 09 Mar 2024, Published online: 23 Mar 2024

References

  • Scanlan MJ, Raj B, Calvo B, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci. 1994;91:5657–5661.
  • Panevin TS, Zhelyabina OV, Eliseev MS, Shestakova MV. Urate-lowering effects of dipeptidyl peptidase-4 inhibitors. Diabetes mellitus. 2020;23:349–356. doi:10.14341/DM12412
  • De Meester I, Korom S, Van Damme J, Scharpé S. CD26, let it cut or cut it down. Immunol Today. 1999;20:367–375. doi:10.1016/S0167-5699(99)01486-3
  • Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356:eaal3321. doi:10.1126/science.aal3321
  • Busso N, Wagtmann N, Herling C, et al. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol. 2005;166:433–442. doi:10.1016/S0002-9440(10)62266-3
  • Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clin Exp Immunol. 2016;185:1–21. doi:10.1111/cei.12781
  • Vanderheyden M, Bartunek J, Goethals M, et al. Dipeptidyl-peptidase IV and B-type natriuretic peptide. From bench to bedside. Clin Chem Lab Med. 2009;47:248–252. doi:10.1515/CCLM.2009.065
  • Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–254. doi:10.1038/nature12005
  • Wang N, Shi X, Jiang L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23:986–993. doi:10.1038/cr.2013.92
  • Lu G, Hu Y, Wang Q, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500:227–231. doi:10.1038/nature12328
  • Li K, Wohlford-Lenane C, Bartlett JA, McCray PB. Inter-individual variation in receptor expression influences MERS-CoV Infection and immune responses in airway epithelia. Front Public Health. 2021;2021:9.
  • Huang J, Liu X, Wei Y, et al. Emerging role of dipeptidyl peptidase-4 in autoimmune disease. Front Immunol. 2022;2022:13.
  • Cashin K, Gray LR, Jakobsen MR, Sterjovski J, Churchill MJ, Gorry PR. CoRSeq V3-C: a novel HIV-1 subtype C specific V3 sequence based coreceptor usage prediction algorithm. Retrovirology. 2013;10:1–10. doi:10.1186/1742-4690-10-24
  • Wu L, Paxton WA, Kassam N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185:1681–1692. doi:10.1084/jem.185.9.1681
  • Rinkevich Y, Walmsley GG, Hu MS, et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015;348:aaa2151. doi:10.1126/science.aaa2151
  • Oh M-D, Park WB, Choe PG, et al. Viral load kinetics of MERS coronavirus infection. N Engl J Med. 2016;375:1303–1305. doi:10.1056/NEJMc1511695
  • Abbott CA, McCaughan GW, Levy MT, Church WB, Gorrell MD. Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted β propeller domain. Eur J Biochem. 1999;266:798–810. doi:10.1046/j.1432-1327.1999.00902.x
  • Yu D, Slaitini L, Gysbers V, et al. Soluble CD26/dipeptidyl peptidase IV enhances human lymphocyte proliferation in vitro independent of dipeptidyl peptidase enzyme activity and adenosine deaminase binding. Scand J Immunol. 2011;73:102–111. doi:10.1111/j.1365-3083.2010.02488.x
  • Vankadari N, Wilce JA. Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes Infect. 2020;9:601–604. doi:10.1080/22221751.2020.1739565
  • Sesti G, Avogaro A, Belcastro S, et al. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetologica. 2019;56:605–617. doi:10.1007/s00592-018-1271-3
  • Tomovic K, Lazarevic J, Kocic G, Deljanin‐Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti‐inflammatory activity of DPP‐4 inhibitors in cardiovascular and renal protection. Med Res Rev. 2019;39:404–422. doi:10.1002/med.21513
  • Lu Z, Doulabi BZ, Wuisman P, Bank R, Helder M. Differentiation of adipose stem cells by nucleus pulposus cells: configuration effect. Biochem Biophys Res Commun. 2007;359:991–996. doi:10.1016/j.bbrc.2007.06.002
  • Gallwitz B. Clinical use of DPP-4 inhibitors. Front Endocrinol. 2019;389. doi:10.3389/fendo.2019.00389
  • Kushwaha R, Haq W, Katti S. Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: a perspective. Curr Med Chem. 2014;21:4013–4045. doi:10.2174/0929867321666140915143309
  • Li X, Huang X, Bai C, et al. Efficacy and safety of teneligliptin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2018;9:449. doi:10.3389/fphar.2018.00449
  • Panchapakesan U, Pollock C. The role of dipeptidyl peptidase–4 inhibitors in diabetic kidney disease. Front Immunol. 2015;6:443. doi:10.3389/fimmu.2015.00443
  • Panayi G, Lanchbury J, Kingsley G. The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum. 1992;35:729–735. doi:10.1002/art.1780350702
  • Novikov A, Aleksandrova Е, Lukina G. Serum cytokine profile in early and established rheumatoid arthritis. Alman Clin Med. 2019;47:393–399. doi:10.18786/2072-0505-2019-47-058
  • Sinnathurai P, Lau W, Vieira de Ribeiro AJ, et al. Circulating fibroblast activation protein and dipeptidyl peptidase 4 in rheumatoid arthritis and systemic sclerosis. Internat J Rheum Dis. 2018;21:1915–1923. doi:10.1111/1756-185X.13031
  • Cordero OJ, Salgado FJ, Mera-Varela A, Nogueira M. Serum interleukin-12, interleukin-15, soluble CD26, and adenosine deaminase in patients with rheumatoid arthritis. Rheumatol Internat. 2001;21:69–74. doi:10.1007/s002960100134
  • Grujic M, Matic IZ, Crnogorac MD, et al. Activity and expression of dipeptidyl peptidase IV on peripheral blood mononuclear cells in patients with early steroid and disease modifying antirheumatic drugs naïve rheumatoid arthritis. Clin Chem Laborat Med. 2017;55:73–81. doi:10.1515/cclm-2015-1279
  • Muscat C, Bertotto A, Agea E, et al. Expression and functional role of 1F7 (CD26) antigen on peripheral blood and synovial fluid T cells in rheumatoid arthritis patients. Clin Exp Immunol. 1994;98:252–256. doi:10.1111/j.1365-2249.1994.tb06134.x
  • Sromova L, Mareckova H, Sedova L, Balaziova E, Sedo A. Dipeptidyl peptidase-IV in synovial fluid and in synovial fluid mononuclear cells of patients with rheumatoid arthritis. Clin Chim Acta. 2010;411:1046–1050. doi:10.1016/j.cca.2010.03.034
  • Buljevic S, Detel D, Pucar LB, et al. Levels of dipeptidyl peptidase IV/CD26 substrates neuropeptide Y and vasoactive intestinal peptide in rheumatoid arthritis patients. Rheumatol Internat. 2013;33:2867–2874. doi:10.1007/s00296-013-2823-z
  • Kamori M, Hagihara M, Nagatsu T, Iwata H, Miura T. Activities of dipeptidyl peptidase II, dipeptidyl peptidase IV, prolyl endopeptidase, and collagenase-like peptidase in synovial membrane from patients with rheumatoid arthritis and osteoarthritis. Biochem Med Metab Biol. 1991;45:154–160. doi:10.1016/0885-4505(91)90016-E
  • Cordero OJ, Varela-Calviño R, López-González T, et al. Anti-CD26 autoantibodies are involved in rheumatoid arthritis and show potential clinical interest. Clin. Biochem. 2017;50:903–910. doi:10.1016/j.clinbiochem.2017.06.001
  • Sedo A, Duke-Cohan JS, Balaziova E, Sedova LR. Dipeptidyl peptidase IV activity and/or structure homologs: contributing factors in the pathogenesis of rheumatoid arthritis? Arthritis Res Therapy. 2005;7:1–17. doi:10.1186/ar1852
  • Kanbe K, Chiba J, Inoue Y, Taguchi M, Yabuki A. SDF-1 and CXCR4 in synovium are associated with disease activity and bone and joint destruction in patients with rheumatoid arthritis treated with golimumab. Mod Rheumatol. 2016;26:46–50. doi:10.3109/14397595.2015.1054088
  • Sasaki T, Hiki Y, Nagumo S, et al. Acute onset of rheumatoid arthritis associated with administration of a dipeptidyl peptidase-4 (DPP-4) inhibitor to patients with diabetes mellitus. Diabetol Int. 2010;1:90–92. doi:10.1007/s13340-010-0010-y
  • Glorie L, Behets GJ, Baerts L, De Meester I, d’Haese PC, Verhulst A. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am J Physiol Endocrinol Metab. 2014;307:E447–E455. doi:10.1152/ajpendo.00217.2014
  • Yokota K, Igaki N. Sitagliptin (DPP-4 inhibitor)-induced rheumatoid arthritis in type 2 diabetes mellitus: a case report. Internal Medicine. 2012;51:2041–2044. doi:10.2169/internalmedicine.51.7592
  • Padron S, Rogers E, Beckler MD, Kesselman M. DPP-4 inhibitor (sitagliptin)-induced seronegative rheumatoid arthritis. BMJ Case Reports CP. 2019;12:e228981. doi:10.1136/bcr-2018-228981
  • Mascolo A, Rafaniello C, Sportiello L, et al. Dipeptidyl peptidase (DPP)-4 inhibitor-induced arthritis/arthralgia: a review of clinical cases. Drug Safety. 2016;39:401–407. doi:10.1007/s40264-016-0399-8
  • Kathe N, Shah A, Said Q, Painter JT. DPP-4 inhibitor-induced rheumatoid arthritis among diabetics: a nested case–control study. Diabetes Therapy. 2018;9:141–151. doi:10.1007/s13300-017-0353-5
  • Douros A, Abrahami D, Yin H, et al. Use of dipeptidyl peptidase-4 inhibitors and new-onset rheumatoid arthritis in patients with type 2 diabetes. Epidemiology. 2018;29:904–912. doi:10.1097/EDE.0000000000000891
  • Charoenngam N, Rittiphairoj T, Ponvilawan B, Ungprasert P. Use of dipeptidyl peptidase-4 inhibitors is associated with a lower risk of rheumatoid arthritis in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies. Diabetes Metab Syndr. 2021;15:249–255. doi:10.1016/j.dsx.2020.12.042
  • Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, Thimme R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol. 2012;188:5438–5447. doi:10.4049/jimmunol.1103801
  • Yamada Y, Jang J-H, De Meester I, et al. CD26 costimulatory blockade improves lung allograft rejection and is associated with enhanced interleukin-10 expression. J Heart Lung Transplant. 2016;35:508–517. doi:10.1016/j.healun.2015.11.002
  • Willheim M, Ebner C, Kern W, et al. Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T H1 subsets. J Allergy Clin Immunol. 1997;100:348–355. doi:10.1016/S0091-6749(97)70248-3
  • Lun SW, Wong C, Ko FW, Hui DS, Lam CW. Increased expression of plasma and CD4+ T lymphocyte costimulatory molecule CD26 in adult patients with allergic asthma. J Clin Immunol. 2007;27:430–437. doi:10.1007/s10875-007-9093-z
  • Salgado FJ, Pérez‐Díaz A, Villanueva NM, Lamas O, Arias P, Nogueira M. CD26: a negative selection marker for human Treg cells. Cytometry Part A. 2012;81:843–855. doi:10.1002/cyto.a.22117
  • Shah Z, Kampfrath T, Deiuliis JA, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124:2338–2349. doi:10.1161/CIRCULATIONAHA.111.041418
  • Gliddon DR, Howard CJ. CD26 is expressed on a restricted subpopulation of dendritic cells in vivo. Europ J Immunol. 2002;32:1472–1481. doi:10.1002/1521-4141(200205)32:5<1472::AID-IMMU1472>3.0.CO;2-Q
  • Zhong J, Rao X, Deiuliis J, et al. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes. 2013;62:149–157. doi:10.2337/db12-0230
  • Bühling F, Kunz D, Reinhold D, et al. Expression and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. Natural Immu. 1994;13:270–279.
  • Shingu K, Helfritz A, Zielinska-Skowronek M, et al. CD26 expression determines lung metastasis in mutant F344 rats: involvement of NK cell function and soluble CD26. Cancer Immunol Immunother. 2003;52:546–554. doi:10.1007/s00262-003-0392-9
  • Yan S, Marguet D, Dobers J, Reutter W, Fan H. Deficiency of CD26 results in a change of cytokine and immunoglobulin secretion after stimulation by pokeweed mitogen. Europ J Immunol. 2003;33:1519–1527. doi:10.1002/eji.200323469
  • Bühling F, Junker U, Reinhold D, Neubert K, Jäger L, Ansorge S. Functional role of CD26 on human B lymphocytes. Immunol Lett. 1995;45:47–51. doi:10.1016/0165-2478(94)00230-O
  • Adams DE, Shao W-H. Epigenetic alterations in immune cells of systemic Lupus erythematosus and therapeutic implications. Cells. 2022;11:506. doi:10.3390/cells11030506
  • Kobayashi H, Hosono O, Mimori T, et al. Reduction of serum soluble CD26/dipeptidyl peptidase IV enzyme activity and its correlation with disease activity in systemic lupus erythematosus. J Rheumatol. 2002;29:1858–1866.
  • Valizadeh M, Ahmadzadeh A, Behzadi M, Yeganeh F. CD26 mRNA expression in systemic lupus erythematosus. Rheumatol Res. 2018;3:77–82. doi:10.22631/rr.2018.69997.1045
  • Awadallah MG, Amer GA, Fawzy RM, El-Melouk MS, Egila SS. CD26 mRNA expression level in systemic lupus erythematosus patients attending Benha University Hospital. Egypt J MedMicrobiol. 2020;29(1):55–60. doi:10.21608/ejmm.2020.249857
  • Seong JM, Yee J, Gwak HS. Dipeptidyl peptidase‐4 inhibitors lower the risk of autoimmune disease in patients with type 2 diabetes mellitus: a nationwide population‐based cohort study. Br J Clin Pharmacol. 2019;85:1719–1727. doi:10.1111/bcp.13955
  • Chen Y-C, Chen T-H, Sun -C-C, et al. Dipeptidyl peptidase-4 inhibitors and the risks of autoimmune diseases in type 2 diabetes mellitus patients in Taiwan: a nationwide population-based cohort study. Acta Diabetologica. 2020;57:1181–1192. doi:10.1007/s00592-020-01533-5
  • Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–1699. doi:10.1016/S0140-6736(17)30933-9
  • Fiocco U, Rosada M, Cozzi L, et al. Early phenotypic activation of circulating helper memory T cells in scleroderma: correlation with disease activity. Ann Rheumatic Dis. 1993;52:272–277. doi:10.1136/ard.52.4.272
  • Petroff A, Pena Diaz A, Armstrong JJ, Gonga-Cavé BC, Hutnik C, O’Gorman DB. Understanding inflammation-associated ophthalmic pathologies: a novel 3D co-culture model of monocyte-myofibroblast immunomodulation. Ocul Immunol Inflamm. 2021;1–12. doi:10.1080/09273948.2020.1862606
  • Bochaton-Piallat M-L, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research. 2016;2016:5.
  • Bosello S, De Santis M, Lama G, et al. B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Therapy. 2010;12:1–10. doi:10.1186/ar2965
  • Ziemek J, Man A, Hinchcliff M, Varga J, Simms RW, Lafyatis R. The relationship between skin symptoms and the scleroderma modification of the health assessment questionnaire, the modified Rodnan skin score, and skin pathology in patients with systemic sclerosis. Rheumatology. 2016;55:911–917. doi:10.1093/rheumatology/kew003
  • Xin Y, Wang X, Zhu M, et al. Expansion of CD26 positive fibroblast population promotes keloid progression. Exp Cell Res. 2017;356:104–113. doi:10.1016/j.yexcr.2017.04.021
  • Shiobara T, Chibana K, Watanabe T, et al. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells. Respir Res. 2016;17:1–11. doi:10.1186/s12931-016-0342-7
  • Tabib T, Huang M, Morse N, et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat Commun. 2021;12:1–13. doi:10.1038/s41467-021-24607-6
  • Lee S-Y, Wu S-T, Liang Y-J, et al. Soluble dipeptidyl peptidase-4 induces fibroblast activation through proteinase-activated receptor-2. Front Pharmacol. 2020;1568. doi:10.3389/fphar.2019.01568
  • Zhang T, Tong X, Zhang S, et al. The roles of dipeptidyl peptidase 4 (DPP4) and DPP4 inhibitors in different lung diseases: new evidence. Front Pharmacol. 2021;3657.
  • Abrahami D, Douros A, Yin H, et al. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. BMJ. 2018;2018:360.
  • Pinto-Lopes P, Afonso J, Pinto-Lopes R, et al. Serum dipeptidyl peptidase 4: a predictor of disease activity and prognosis in inflammatory bowel disease. Inflammat Bow Dis. 2020;26(11):1707–1719. doi:10.1093/ibd/izz319
  • Magro DO, Kotze PG, Martinez CAR, et al. Changes in serum levels of lipopolysaccharides and CD26 in patients with Crohn’s disease. Intestinal Res. 2017;15:352. doi:10.5217/ir.2017.15.3.352
  • Moran G, O’Neill C, Padfield P, McLaughlin J. Dipeptidyl peptidase-4 expression is reduced in Crohn’s disease. Regul Pept. 2012;177:40–45. doi:10.1016/j.regpep.2012.04.006
  • Di Giovangiulio M, Verheijden S, Bosmans G, Stakenborg N, Boeckxstaens GE, Matteoli G. The neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease. Front Immunol. 2015;6:590. doi:10.3389/fimmu.2015.00590
  • Detel D, Buljevic S, Pucar LB, Kucic N, Pugel EP, Varljen J. Influence of CD26/dipeptidyl peptidase IV deficiency on immunophenotypic changes during colitis development and resolution. J Physiol Biochem. 2016;72:405–419. doi:10.1007/s13105-016-0491-7
  • Duan L, Rao X, Braunstein Z, Toomey AC, Zhong J. Role of incretin axis in inflammatory bowel disease. Front Immunol. 2017;8:1734. doi:10.3389/fimmu.2017.01734
  • Ning M-M, Yang W-J, Guan W-B, Gu Y-P, Feng Y, Leng Y. Dipeptidyl peptidase 4 inhibitor sitagliptin protected against dextran sulfate sodium-induced experimental colitis by potentiating the action of GLP-2. Acta Pharmacol Sin. 2020;41:1446–1456. doi:10.1038/s41401-020-0413-7
  • Mimura S, Ando T, Ishiguro K, et al. Dipeptidyl peptidase-4 inhibitor anagliptin facilitates restoration of dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 2013;48:1152–1159. doi:10.3109/00365521.2013.832366
  • Kridin K, Amber K, Khamaisi M, Comaneshter D, Batat E, Cohen AD. Is there an association between dipeptidyl peptidase-4 inhibitors and autoimmune disease? A population-based study. Immunol Res. 2018;66:425–430. doi:10.1007/s12026-018-9005-8
  • Wang T, Yang JY, Buse JB, et al. Dipeptidyl peptidase 4 inhibitors and risk of inflammatory bowel disease: real-world evidence in US adults. Diabetes Care. 2019;42:2065–2074. doi:10.2337/dc19-0162
  • Radel JA, Pender DN, Shah SA. Dipeptidyl peptidase-4 inhibitors and inflammatory bowel disease risk: a meta-analysis. Ann. Pharmacother. 2019;53:697–704. doi:10.1177/1060028019827852
  • Malek Abrahimians E, Vander Elst L, Carlier VA, Saint-Remy J-M. Thioreductase-containing epitopes inhibit the development of type 1 diabetes in the NOD mouse model. Front Immunol. 2016;7:67. doi:10.3389/fimmu.2016.00067
  • Iwabuchi A, Kamoda T, Saito M, et al. Serum dipeptidyl peptidase 4 activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2013;26:1093–1097. doi:10.1515/jpem-2013-0122
  • Varga T, Somogyi A, Barna G, et al. Higher serum DPP-4 enzyme activity and decreased lymphocyte CD26 expression in type 1 diabetes. Pathol Oncol Res. 2011;17:925–930. doi:10.1007/s12253-011-9404-9
  • Osawa S, Kawamori D, Katakami N, et al. Significant elevation of serum dipeptidyl peptidase-4 activity in young-adult type 1 diabetes. Diabetes Res Clin Pract. 2016;113:135–142. doi:10.1016/j.diabres.2015.12.022
  • Ellis S, Moser E, Snell‐Bergeon JK, Rodionova A, Hazenfield R, Garg S. Effect of sitagliptin on glucose control in adult patients with Type 1 diabetes: a pilot, double‐blind, randomized, crossover trial. Diabetic Med. 2011;28:1176–1181. doi:10.1111/j.1464-5491.2011.03331.x
  • Garg SK, Moser EG, Bode BW, et al. Effect of sitagliptin on post-prandial glucagon and GLP-1 levels in patients with type 1 diabetes: investigator-initiated, double-blind, randomized, placebo-controlled trial. Endocr Pract. 2013;19:19–28. doi:10.4158/EP12100.OR
  • Kumar KH, Shaikh A, Prusty P. Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study. Diabetes Res Clin Pract. 2013;100:e55–e58. doi:10.1016/j.diabres.2013.01.020
  • Rahmani-Kukia N, Abbasi A. Physiological and immunological causes of the susceptibility of chronic inflammatory patients to COVID-19 infection: focus on diabetes. Front Endocrinol. 2021;12:84. doi:10.3389/fendo.2021.576412
  • Cechin S, Perez-Alvarez I, Fenjves E, et al. Anti-inflammatory properties of exenatide in human pancreatic islets. Cell Transplant. 2012;21:633–648. doi:10.3727/096368911X576027
  • Kim S-J, Nian C, Doudet DJ, McIntosh CH. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes. 2009;58:641–651. doi:10.2337/db08-1101
  • Davanso MR, Caliari-Oliveira C, Couri CEB, et al. DPP-4 inhibition leads to decreased pancreatic inflammatory profile and increased frequency of regulatory T cells in experimental type 1 diabetes. Inflammation. 2019;42:449–462. doi:10.1007/s10753-018-00954-3
  • Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326. doi:10.1056/NEJMoa1307684
  • Ferreira JP, Mehta C, Sharma A, Nissen SE, Rossignol P, Zannad F. Alogliptin after acute coronary syndrome in patients with type 2 diabetes: a renal function stratified analysis of the EXAMINE trial. BMC Med. 2020;18(1):1–10. doi:10.1186/s12916-020-01616-8
  • Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–242. doi:10.1056/NEJMoa1501352
  • Best JH, Hoogwerf BJ, Herman WH, et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care. 2011;34:90–95. doi:10.2337/dc10-1393
  • Gu X, Al Dubayee M, Alshahrani A, et al. Distinctive metabolomics patterns associated with insulin resistance and type 2 diabetes mellitus. Front Mol Biosci. 2020;7:411. doi:10.3389/fmolb.2020.609806
  • Tiruppathi C, Miyamoto Y, Ganapathy V, Roesel RA, Whitford GM, Leibach FH. Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains. J Biol Chem. 1990;265:1476–1483. doi:10.1016/S0021-9258(19)40041-0
  • Miyazono K, Heldin C-H. Latent forms of TGF-: molecular structure and mechanisms of activation. Procee Clin Applic. 2008;2008:81–92.
  • Liu WJ, Xie SH, Liu YN, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340:248–255. doi:10.1124/jpet.111.186866
  • Mega C, Teixeira de Lemos E, Vala H, et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Experim Diab Res. 2011;2011. doi:10.1155/2011/162092
  • Min HS, Kim JE, Lee MH, et al. Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction. Lab Invest. 2014;94:598–607. doi:10.1038/labinvest.2014.50
  • Matsui T, Nakashima S, Nishino Y, et al. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab Invest. 2015;95:525–533. doi:10.1038/labinvest.2015.35
  • Nakashima S, Matsui T, Takeuchi M, Yamagishi S-I. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Hormone Metab Res. 2014;46:717–721. doi:10.1055/s-0034-1371892
  • Salheen S, Panchapakesan U, Pollock C, Woodman O. The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose. Pharmacol Res. 2015;94:26–33. doi:10.1016/j.phrs.2015.02.003
  • Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol. 2017;312:F661–F670. doi:10.1152/ajprenal.00316.2016
  • Kodera R, Shikata K, Takatsuka T, et al. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem Biophys Res Commun. 2014;443:828–833. doi:10.1016/j.bbrc.2013.12.049
  • Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun. 2013;434:191–196. doi:10.1016/j.bbrc.2013.03.010
  • Makrantonaki E, Jiang D, Hossini AM, et al. Diabetes mellitus and the skin. Rev Endocr Metab Disord. 2016;17:269–282. doi:10.1007/s11154-016-9373-0
  • Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol. 2015;6:386. doi:10.3389/fimmu.2015.00386
  • Maryam S, Ul Haq I, Yahya G, et al. COVID-19 surveillance in wastewater: an epidemiological tool for the monitoring of SARS-CoV-2. Front Cell Infect Microbiol. 2023;12:1743. doi:10.3389/fcimb.2022.978643
  • Elmorsy MA, El-Baz AM, Mohamed NH, Almeer R, Abdel-Daim MM, Yahya G. In silico screening of potent inhibitors against COVID-19 key targets from a library of FDA-approved drugs. Environ Sci Pollut Res Int. 2022;29(8):12336–12346. doi:10.1007/s11356-021-16427-4
  • Yang L, Tu L. Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroent Hepat. 2020;5:629–630. doi:10.1016/S2468-1253(20)30132-1
  • Ul Haq I, Krukiewicz K, Yahya G, et al. The breadth of bacteriophages contributing to the development of the phage-based vaccines for COVID-19: an ideal platform to design the multiplex vaccine. Int J Mol Sci. 2023;24:1536. doi:10.3390/ijms24021536
  • Panther EJ, Lucke-Wold B. Subarachnoid hemorrhage: management considerations for COVID-19. Explorat Neuroprot Thera. 2022;2:65. doi:10.37349/ent.2022.00018
  • Egbuna C, Chandra S, Awuchi CG, et al. Myth surrounding the FDA disapproval of hydroxychloroquine sulfate and chloroquine phosphate as drugs for coronavirus disease 2019. In: Coronavirus Drug Discovery. Elsevier; 2022:153–168.
  • Haq IU, Krukiewicz K, Tayyab H, et al. Molecular Understanding of ACE-2 and HLA-conferred differential susceptibility to COVID-19: host-directed insights opening new windows in COVID-19 Therapeutics. J Clin Med. 2023;12:2645. doi:10.3390/jcm12072645
  • Levy E, Delvin E, Marcil V, Spahis S. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)? Am J Physiol Endocrinol Metab. 2020;319:E689–E708. doi:10.1152/ajpendo.00298.2020
  • Sizemore G, Lucke-Wold B, Small C. Review of SARS-COV-2 systemic impact: building the case for sepsis via virus in the circulatory system. SM J Neurol Disord Strok. 2022;2022:6.
  • Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020;526:135–140. doi:10.1016/j.bbrc.2020.03.044
  • Meyerholz DK, Lambertz AM, McCray PB. Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East respiratory syndrome. Am J Pathol. 2016;186:78–86. doi:10.1016/j.ajpath.2015.09.014
  • Seys LJ, Widagdo W, Verhamme FM, et al. DPP4, the Middle East respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients. Clinl Infect Dis. 2018;66:45–53. doi:10.1093/cid/cix741
  • Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host determinants of MERS-CoV transmission and pathogenesis. Viruses. 2019;11:280. doi:10.3390/v11030280
  • Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circul Res. 2015;116:1491–1504. doi:10.1161/CIRCRESAHA.116.305665
  • Noels H, Bernhagen J. The CXCR4 ligand/receptor family and the DPP4 protease in high-risk cardiovascular patients. Front Immunol. 2016;7:58. doi:10.3389/fimmu.2016.00058
  • Conarello SL, Li Z, Ronan J, et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci. 2003;100:6825–6830. doi:10.1073/pnas.0631828100
  • Kulcsar K, Coleman C, Beck S, Frieman M. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 2019;4(20):e131774. doi:10.1172/jci.insight.131774
  • Kim KM, Noh JH, Bodogai M, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017;31:1529–1534. doi:10.1101/gad.302570.117
  • Atal S, Fatima Z. IL-6 inhibitors in the treatment of serious COVID-19: a promising therapy? Pharm Med. 2020;34:223–231. doi:10.1007/s40290-020-00342-z
  • Zea-Vera A, Cordova EG, Rodriguez S, et al. Parasite antigen in serum predicts the presence of viable brain parasites in patients with apparently calcified cysticercosis only. Clinl Infect Dis. 2013;57:e154–e159. doi:10.1093/cid/cit422
  • Krejner‐Bienias A, Grzela K, Grzela T. Do novel drugs for diabetes help in COVID‐19? Another brick in the wall? J Diab. 2020;12:703. doi:10.1111/1753-0407.13050
  • Inan M, Koyuncu A, Aydin C, Turan M, Gokgoz S, Sen M. Thyroid hormone supplementation in sepsis: an experimental study. Surgery Today. 2003;33:24–29. doi:10.1007/s005950300004
  • Arulmozhiraja S, Matsuo N, Ishitsubo E, Okazaki S, Shimano H, Tokiwa H. Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs–an ab initio fragment molecular orbital study. PLoS One. 2016;11:e0166275. doi:10.1371/journal.pone.0166275
  • Wilce J, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9:601–604.
  • Bardaweel SK, Hajjo R, Sabbah A. Sitagliptin: a potential drug for the treatment of COVID-19? Acta Pharm. 2021;71:175–184. doi:10.2478/acph-2021-0013
  • Hippisley-Cox J, Young D, Coupland C, et al. Risk of severe COVID-1352 19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study 1353 including 8.3 million people. Heart. 2020;106:1503–1511. doi:10.1136/heartjnl-2020-317393
  • van Riet E, Everts B, Retra K, et al. Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization. BMC Immunol. 2009;10:1–12. doi:10.1186/1471-2172-10-9
  • Price J, Linder G, Li W, et al. Effects of short-term sitagliptin treatment on immune parameters in healthy individuals, a randomized placebo-controlled study. Clin Exp Immunol. 2013;174:120–128. doi:10.1111/cei.12144
  • Yang W, Cai X, Han X, Ji L. DPP‐4 inhibitors and risk of infections: a meta‐analysis of randomized controlled trials. Diabetes/Metab Res Rev. 2016;32:391–404. doi:10.1002/dmrr.2723
  • Wvan der Zanden R, De Vries F, Lalmohamed A, et al. Use of dipeptidyl-peptidase-4 inhibitors and the risk of pneumonia: a population-based cohort study. PLoS One. 2015;10:e0139367. doi:10.1371/journal.pone.0139367
  • Gooßen K, Gräber S. Longer term safety of dipeptidyl peptidase‐4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta‐analysis. Diabetes Obesity Metab. 2012;14:1061–1072. doi:10.1111/j.1463-1326.2012.01610.x
  • Kupferschmidt K. A cheap steroid is the first drug shown to reduce death in COVID-19 patients. Science. 2020;2020:1.
  • Solerte SB, D’Addio F, Trevisan R, et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care. 2020;43:2999–3006. doi:10.2337/dc20-1521
  • Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis. 2013;226:305–314. doi:10.1016/j.atherosclerosis.2012.09.012
  • Baz M, Boivin G. Antiviral agents in development for Zika virus infections. Pharmaceuticals. 2019;12:101. doi:10.3390/ph12030101
  • Ma J, Zhong M, Xiong Y, et al. Emerging roles of nucleotide metabolism in cancer development: progress and prospect. Aging. 2021;13:13349. doi:10.18632/aging.202962
  • Ragab D, Laird M, Duffy D, et al. CXCL10 antagonism and plasma sDPPIV correlate with increasing liver disease in chronic HCV genotype 4 infected patients. Cytokine. 2013;63:105–112. doi:10.1016/j.cyto.2013.04.016
  • Rainczuk A, Rao JR, Gathercole JL, et al. Evidence for the antagonistic form of CXC‐motif chemokine CXCL10 in serous epithelial ovarian tumours. Internat J Can. 2014;134:530–541. doi:10.1002/ijc.28393
  • Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109:531–538. doi:10.1007/s00392-020-01626-9
  • Liu Z, Li J, Huang J, et al. Association between diabetes and COVID-19: a retrospective observational study with a large sample of 1880 cases in Leishenshan Hospital, Wuhan. Front Endocrinol. 2020;478. doi:10.3389/fendo.2020.00478
  • Wu Z, McGoogan JM. Asymptomatic and pre-symptomatic COVID-19 in China. Infect Diseases Poverty. 2020;9:1–2. doi:10.1186/s40249-020-00679-2
  • Mauvais-Jarvis F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes. 2020;69:1857–1863. doi:10.2337/dbi19-0023
  • Ghorpade DS, Ozcan L, Zheng Z, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673–677. doi:10.1038/nature26138
  • Shekhar S, Copacino CE, Barrera FJ, Hall JE, Hannah-Shmouni F. Insights into the immunopathophysiology of severe COVID-19 in METABOLIC DISOrders. Anna Nat Acad Med Sci. 2020;56:112–115. doi:10.1055/s-0040-1713346
  • Kirino Y, Sei M, Kawazoe K, Minakuchi K, Sato Y. Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people. Endocr J. 2012;59:949–953. doi:10.1507/endocrj.EJ12-0158
  • Yang F, Zheng T, Gao Y, et al. Increased plasma DPP4 activity is an independent predictor of the onset of metabolic syndrome in Chinese over 4 years: result from the China national diabetes and metabolic disorders study. PLoS One. 2014;9:e92222. doi:10.1371/journal.pone.0092222
  • Cavalu S, Damian G, Dânşoreanu M. EPR study of non-covalent spin labeled serum albumin and hemoglobin. Biophys Chem. 2022;99(2):181–188. doi:10.1016/S0301-4622(02)00182-5
  • Metwally K, Pratsinis H, Kletsas D, et al. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Future Med Chem. 2017;9(18):2147–2166. doi:10.4155/fmc-2017-0149
  • Pang Z, Nakagami H, Osako MK, et al. Therapeutic vaccine against DPP4 improves glucose metabolism in mice. Proc Natl Acad Sci. 2014;111:E1256–E1263. doi:10.1073/pnas.1322009111
  • Fujihara K, Igarashi R, Matsunaga S, et al. Comparison of baseline characteristics and clinical course in Japanese patients with type 2 diabetes among whom different types of oral hypoglycemic agents were chosen by diabetes specialists as initial monotherapy (JDDM 42). Medicine. 2017;15:96. doi:10.1186/s12916-017-0859-8
  • Kagal UA, Angadi NB, Matule SM. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. Int J App Basic Med Res. 2017;7:26. doi:10.4103/2229-516X.198516
  • Birnbaum Y, Bajaj M, Qian J, Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care. 2016;4:e000227. doi:10.1136/bmjdrc-2016-000227
  • Beraldo JI, Benetti A, Borges-Júnior FA, et al. Cardioprotection conferred by sitagliptin is associated with reduced cardiac angiotensin II/Angiotensin-(1-7) balance in experimental chronic kidney disease. Int J Mol Sci. 2019;20:1940. doi:10.3390/ijms20081940
  • Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH. The challenge of developing novel pharmacological therapies for non‐alcoholic steatohepatitis. Liver Int. 2010;30:795–808. doi:10.1111/j.1478-3231.2010.02264.x
  • Tacelli M, Celsa C, Magro B, et al. Antidiabetic drugs in NAFLD: the accomplishment of two goals at once? Pharmaceuticals. 2018;11:121. doi:10.3390/ph11040121
  • Makdissi A, Ghanim H, Vora M, et al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab. 2012;97:3333–3341. doi:10.1210/jc.2012-1544
  • Tang S, Ma W, Bai P. A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4. Comput Math Methods Med. 2017;2017. doi:10.1155/2017/5285810
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi:10.1016/S0140-6736(20)30628-0
  • Lagunas‐Rangel FA. Neutrophil‐to‐lymphocyte ratio and lymphocyte‐to‐C‐reactive protein ratio in patients with severe coronavirus disease 2019 (COVID‐19): a meta‐analysis. J med virol. 2020;92:1733–1734. doi:10.1002/jmv.25819
  • Sakaeda T, Tamon A, Kadoyama K, Okuno Y. Data mining of the public version of the FDA Adverse Event Reporting System. Int J Med Sci. 2013;10:796. doi:10.7150/ijms.6048