296
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Single-Cell Sequencing Combined with Transcriptome Sequencing Constructs a Predictive Model of Key Genes in Multiple Sclerosis and Explores Molecular Mechanisms Related to Cellular Communication

ORCID Icon, , , &
Pages 191-210 | Received 20 Oct 2023, Accepted 28 Dec 2023, Published online: 08 Jan 2024

References

  • Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis—a quiet revolution. Nat Rev Neurol. 2015;11(3):134–142. doi:10.1038/nrneurol.2015.14
  • Dobson R, Giovannoni G. Multiple sclerosis – a review. Eur J Neurol. 2018;26(1):27–40. doi:10.1111/ene.13819
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952. doi:10.1056/NEJM200009283431307
  • Scalfari A, Neuhaus A, Degenhardt A, et al. The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability. Brain. 2010;133(7):1914–1929. doi:10.1093/brain/awq118
  • Antel J, Antel S, Caramanos Z, Arnold DL, Kuhlmann T. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol. 2012;123(5):627–638. doi:10.1007/s00401-012-0953-0
  • Noseworthy N, Bass BH, Vandervoort MK, et al. The prevalence of primary Sjögren’s syndrome in a multiple sclerosis population. Ann Neurol. 1989;25(1):95–98. doi:10.1002/ana.410250117
  • Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636. doi:10.1016/S0140-6736(18)30481-1
  • Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389(10076):1336–1346. doi:10.1016/S0140-6736(16)30959-X
  • Yamout B, Alroughani R. Multiple sclerosis. Semin Neurol. 2018;38(02):212–225. doi:10.1055/s-0038-1649502
  • Wallin MT, Culpepper WJ, Nichols E, et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(3):269–285. doi:10.1016/S1474-4422(18)30443-5
  • Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 2021;20(6):470–483. doi:10.1016/S1474-4422(21)00063-6
  • Fischer MT, Sharma R, Lim JL, et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 2012;135(3):886–899. doi:10.1093/brain/aws012
  • Campbell GR, Ziabreva I, Reeve AK, et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 2010;69(3):481–492.
  • Bauer J, Elger CE, Hans VH, et al. Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol. 2007;62(1):67–80. doi:10.1002/ana.21148
  • Amin HC, Hersh CM. Updates and advances in multiple sclerosis neurotherapeutic. Neurodegener Dis Manag. 2023;13(1):47–70. doi:10.2217/nmt-2021-0058
  • Tobin WO. Early diagnosis and treatment are associated with improved outcomes in patients with multiple sclerosis. Neurology. 2021;97(17):799–800. doi:10.1212/WNL.0000000000012738
  • Thouvenot E. Multiple sclerosis biomarkers: helping the diagnosis? Rev Neurol. 2018;174(6):364–371. doi:10.1016/j.neurol.2018.04.002
  • Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. Protein Interact Netw. 2022;131:85–164.
  • Udhaya Kumar S, Thirumal Kumar D, Bithia R, et al. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: a systematic and bioinformatics approach. Front Genetics;2020;11:11. doi:10.3389/fgene.2020.00011
  • Cao Y, Qiu Y, Tu G, Yang C. Single-cell RNA sequencing in immunology. Curr Genomics. 2020;21(8):564–575. doi:10.2174/1389202921999201020203249
  • Huang X, Liu S, Wu L, Jiang M, Hou Y. High throughput single cell RNA sequencing, bioinformatics analysis and applications. Single Cell Biomed. 2018;2018:33–43.
  • T R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–395. doi:10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
  • Chen X, Zhang Q, Zhang Q. Predicting potential biomarkers and immune infiltration characteristics in heart failure. Math Biosci Eng. 2022;19(9):8671–8688. doi:10.3934/mbe.2022402
  • Li Z, Huang B, Yi W, et al. Identification of potential early diagnostic biomarkers of sepsis. J Inflamm Res. 2021;14:621–631. doi:10.2147/JIR.S298604
  • Liu Y, Wu M, Cao J, et al. Identification and verification of a glycolysis-related gene signature for gastric cancer. Ann Translat Med. 2022;10(18):1010. doi:10.21037/atm-22-3980
  • Zhang Y, Xia R, Lv M, et al. Machine-learning algorithm-based prediction of diagnostic gene biomarkers related to immune infiltration in patients with chronic obstructive pulmonary disease. Front Immunol. 2022;13:1.
  • Chen X, Zhang D, Jiang F, et al. Prognostic prediction using a stemness index-related signature in a cohort of gastric cancer. Front Mol Biosci. 2020;7. doi:10.3389/fmolb.2020.570702
  • Shommo G, Apolloni B. A holistic miRNA-mRNA module discovery. Non-Coding RNA Res. 2021;6(4):159–166. doi:10.1016/j.ncrna.2021.09.001
  • Ni W-J, Leng X-M. Dynamic miRNA–mRNA paradigms: new faces of miRNAs. Biochem Biophys Rep. 2015;4:337–341. doi:10.1016/j.bbrep.2015.10.011
  • Macaron G, Ontaneda D. Diagnosis and management of progressive multiple sclerosis. Biomedicines. 2019;7(3):56. doi:10.3390/biomedicines7030056
  • Doshi A, Chataway J. Multiple sclerosis, a treatable disease. Clin Med. 2016;16(Suppl 6):s53–s59. doi:10.7861/clinmedicine.16-6-s53
  • Banwell BL. Multiple sclerosis in children. Mult Scler Relat Disord. 2014;1:427–441.
  • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–1149. doi:10.1038/nn.2887
  • Yamasaki R, Lu H, Butovsky O, et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211(8):1533–1549. doi:10.1084/jem.20132477
  • Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–558. doi:10.1038/nri3871
  • Nikbin B, Bonab MM, Khosravi F, Talebian F. Role of B cells in pathogenesis of multiple sclerosis. Neurobiol Mult Scler. 2007;2007:13–42.
  • Adriani M, Nytrova P, Mbogning C, et al. Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients. JCI Insight. 2018;3(11). doi:10.1172/jci.insight.99274
  • Sestito C, Brevé JJP, van Eggermond MCJA, et al. Monocyte-derived tissue transglutaminase in multiple sclerosis patients: reflecting an anti-inflammatory status and function of the cells? J Neuroinflammation. 2017;14(1). doi:10.1186/s12974-017-1035-y
  • Lucchinetti BW, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–717. doi:10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
  • Bar-Or A. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain. 2003;126(12):2738–2749. doi:10.1093/brain/awg285
  • Chuluundorj D, Harding SA, Abernethy D, La Flamme AC. Expansion and preferential activation of the CD14+CD16+ monocyte subset during multiple sclerosis. Immunol Cell Biol. 2014;92(6):509–517. doi:10.1038/icb.2014.15
  • Faissner S, Gold R. Efficacy and safety of multiple sclerosis drugs approved since 2018 and future developments. CNS Drugs. 2022;36(8):803–817. doi:10.1007/s40263-022-00939-9
  • de Sèze J, Maillart E, Gueguen A, et al. Anti-CD20 therapies in multiple sclerosis: from pathology to the clinic. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1004795
  • Elsbernd PM, Carter JL. Using monoclonal antibody therapies for multiple sclerosis: a review. Biologics. 2021;15:255–263.
  • Tian S, Huang P, Gu Y, et al. Systems biology analysis of the effect and mechanism of Qi-Jing-Sheng-Bai granule on leucopenia in mice. Front Pharmacol;2019;10:10. doi:10.3389/fphar.2019.00010
  • Wei Z, Shen Y, Zhou C, Cao Y, Deng H, Shen Z. CD3D: a prognostic biomarker associated with immune infiltration and immunotherapeutic response in head and neck squamous cell carcinoma. Bioengineered. 2022;13(5):13784–13800. doi:10.1080/21655979.2022.2084254
  • Yang Y, Zang Y, Zheng C, et al. CD3D is associated with immune checkpoints and predicts favorable clinical outcome in colon cancer. Immunotherapy. 2020;12(1):25–35. doi:10.2217/imt-2019-0145
  • Riemondy KA, Ransom M, Alderman C, et al. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries. Nucleic Acids Res. 2019;47(4):e20–e20. doi:10.1093/nar/gky1204
  • Yuan L, Xu J, Shi Y, et al. CD3D is an independent prognostic factor and correlates with immune infiltration in gastric cancer. Front Oncol. 2022;2022:12.
  • Doucey M-A, Goffin L, Naeher D, et al. CD3δ establishes a functional link between the T cell receptor and CD8. J Biol Chem. 2003;278(5):3257–3264. doi:10.1074/jbc.M208119200
  • Ayars M, O’Sullivan E, Macgregor-Das A, et al. IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth. Oncotarget. 2017;8(48):83370–83383. doi:10.18632/oncotarget.19848
  • Aliyari Z, Soleimanirad S, Sayyah Melli M, Tayefi Nasrabadi H, Nozad Charoudeh H. IL2rg cytokines enhance umbilical cord blood CD34+ cells differentiation to T cells. Adv Pharm Bull. 2015;5(Suppl 1):615–619. doi:10.15171/apb.2015.083
  • Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genet. 2011;43(5):429–435. doi:10.1038/ng.803
  • Ma J, Zhang W, Tan L, et al. MS4A6A genotypes are associated with the atrophy rates of Alzheimer’s disease related brain structures. Oncotarget. 2016;7(37):58779–58788. doi:10.18632/oncotarget.9563
  • Fan K, Tang B-S, Wang Y-Q, et al. The GBA, DYRK1A and MS4A6A polymorphisms influence the age at onset of Chinese Parkinson patients. Neurosci Lett. 2016;621:133–136. doi:10.1016/j.neulet.2016.04.014
  • Zhang C, Liu H, Tan Y, et al. MS4A6A is a new prognostic biomarker produced by macrophages in glioma patients. Front Immunol. 2022;13:865020.
  • Wang Y, Zhang X, Duan M, et al. Identification of potential biomarkers associated with acute myocardial infarction by weighted gene coexpression network analysis. Oxid Med Cell Longev. 2021;2021:1–11.
  • Chou J, Hsu JT, Bainter W, Al-Attiyah R, Al-Herz W, Geha RS. A novel mutation in NCF2 associated with autoimmune disease and a solitary late-onset infection. Clin Immunol. 2015;161(2):128–130. doi:10.1016/j.clim.2015.08.003
  • McCarthy MI, Cunninghame Graham DS, Morris DL, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genetics. 2011;7(10):1.
  • Huang N, Zhang J, Kuang S, et al. Role of NCF2 as a potential prognostic factor and immune infiltration indicator in hepatocellular carcinoma. Cancer Med. 2023;12(7):8991–9004. doi:10.1002/cam4.5597
  • Zhu Z, Ye W, Wu X, et al. Comprehensive analysis reveals a prognostic and therapeutic biomarker CD3D in the breast carcinoma microenvironment. Biosci Rep. 2021;41(1). doi:10.1042/BSR20202898
  • Jiang W, Zhu D, Wang C, Zhu Y. An immune relevant signature for predicting prognoses and immunotherapeutic responses in patients with muscle‐invasive bladder cancer (MIBC). Cancer Med. 2020;9(8):2774–2790. doi:10.1002/cam4.2942
  • Li Q, Yang Z, Ling X, et al. Correlation analysis of prognostic gene expression, tumor microenvironment, and tumor-infiltrating immune cells in ovarian cancer. Dis Markers. 2023;2023:1–24.
  • Zhang C, Wu S. Hypomethylation of CD3D promoter induces immune cell infiltration and supports malignant phenotypes in uveal melanoma. THE FASEB Journal. 2023;37(10). doi:10.1096/fj.202300505RR
  • Yang Q, Feng Z, Ding D, Kang C. CD3D and CD247 are the molecular targets of septic shock. Medicine. 2023;102(29):1.
  • Moezzi D, Dong Y, Jain RW, et al. Expression of antioxidant enzymes in lesions of multiple sclerosis and its models. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-16840-w
  • Iñarrea P, Alarcia R, Alava MA, et al. Mitochondrial complex enzyme activities and cytochrome c expression changes in multiple sclerosis. Mol Neurobiol. 2013;49(1):1–9. doi:10.1007/s12035-013-8481-z
  • Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 2018;17(1):94–102. doi:10.1016/S1474-4422(17)30401-5
  • Münch C, Meyer R, Linke P, et al. The p150 subunit of dynactin (DCTN1) gene in multiple sclerosis. Acta neurol Scand. 2007;116(4):231–234. doi:10.1111/j.1600-0404.2007.00884.x
  • Zhang C, Dang D, Cong L, Sun H, Cong X. Pivotal factors associated with the immunosuppressive tumor microenvironment and melanoma metastasis. Cancer Med. 2021;10(14):4710–4720. doi:10.1002/cam4.3963
  • Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis. 2021;36(3):375–406. doi:10.1007/s11011-020-00648-6
  • Villoslada P, Holmøy T, Løken-Amsrud KI, et al. Inflammation markers in multiple sclerosis: CXCL16 reflects and may also predict disease activity. PLoS One. 2013;8(9):1.
  • Szczuciński A, Losy J. CCL5, CXCL10 and CXCL11 chemokines in patients with active and stable relapsing-remitting multiple sclerosis. Neuroimmunomodulation. 2011;18(1):67–72. doi:10.1159/000317394
  • Tomioka R, Matsui M. Biomarkers for multiple sclerosis. Internal Medicine. 2014;53(5):361–365. doi:10.2169/internalmedicine.53.1246
  • Levy H, Gluschnaider U, Balbir-Gurman A. The role of CCL24 in systemic sclerosis. Rambam Maimonides Med J. 2023;14(3):e0016. doi:10.5041/RMMJ.10504
  • Yan J, Yuan P, Gui L, et al. CCL28 downregulation attenuates pancreatic cancer progression through tumor cell-intrinsic and -extrinsic mechanisms. Technol Cancer Res Treat. 2021;20:15330338211068958.
  • Gowhari Shabgah A, et al. Chemokine CXCL14; a double-edged sword in cancer development. Int Immunopharmacol. 2021;97:107681.
  • Fadul CE, Mao-Draayer Y, Ryan KA, et al. Safety and immune effects of blocking CD40 ligand in multiple sclerosis. Neurol Neuroimmunol Neuroinflammat. 2021;8(6). doi:10.1212/NXI.0000000000001096
  • Zhao J, Roberts A, Wang Z, Savage J, Ji -R-R. Emerging role of PD-1 in the central nervous system and brain diseases. Neurosci Bull. 2021;37(8):1188–1202. doi:10.1007/s12264-021-00683-y
  • Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun. 2021;123:102702.
  • Zhang X, Ge R, Chen H, et al. Follicular helper CD4+ T cells, follicular regulatory CD4+ T cells, and inducible costimulator and their roles in multiple sclerosis and experimental autoimmune encephalomyelitis. Mediators Inflammation. 2021;2021:1–10. doi:10.1155/2021/7393029
  • Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol. 2021;354:577520.
  • Schönrich G, Abdelaziz MO, Raftery MJ. Epstein-Barr virus, interleukin-10 and multiple sclerosis: a ménage à trois. Front Immunol. 2022;13:1028972.
  • Piancone F, Saresella M, Marventano I, et al. B lymphocytes in multiple sclerosis: bregs and BTLA/CD272 expressing-CD19+ lymphocytes modulate disease severity. Sci Rep. 2016;6(1). doi:10.1038/srep29699
  • Zuccalà M, Barizzone N, Boggio E, et al. Genomic and functional evaluation of TNFSF14 in multiple sclerosis susceptibility. J Genet Genome. 2021;48(6):497–507. doi:10.1016/j.jgg.2021.03.017
  • Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M. The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflammation Res. 2016;65(7):511–520. doi:10.1007/s00011-016-0936-z
  • Wagner M, Sobczyński M, Karabon L, et al. Polymorphisms in CD28, CTLA-4, CD80 and CD86 genes may influence the risk of multiple sclerosis and its age of onset. J Neuroimmunol. 2015;288:79–86. doi:10.1016/j.jneuroim.2015.09.004
  • Mackay F, Ambrose C. The TNF family members BAFF and April: the growing complexity. Cytokine Growth Factor Rev. 2003;14(3–4):311–324. doi:10.1016/S1359-6101(03)00023-6
  • Melamed E, Lee MW. Multiple sclerosis and cancer: the Ying-Yang effect of disease modifying therapies. Front Immunol. 2020;10. doi:10.3389/fimmu.2019.02954
  • Lysandropoulos AP, Mavroudakis N, Pandolfo M, et al. HLA genotype as a marker of multiple sclerosis prognosis: a pilot study. J Neurol Sci. 2017;375:348–354. doi:10.1016/j.jns.2017.02.019
  • Lincoln MR, Ramagopalan SV, Chao MJ, et al. Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci U S A. 2009;106(18):7542–7547. doi:10.1073/pnas.0812664106