170
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1295-1323 | Received 25 Oct 2023, Accepted 23 Jan 2024, Published online: 26 Feb 2024

References

  • Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1.
  • Fokkens WJ, Lund VJ, Hopkins C, et al. Executive summary of EPOS 2020 including integrated care pathways. Rhinology. 2020;58(2):82–111. doi:10.4193/Rhin20.601
  • Bachert C, Zhang N, van Zele T, Gevaert P. Chronic rhinosinusitis: from one disease to different phenotypes. Pediatr Allergy Immunol. 2012;23(22):2–4. doi:10.1111/j.1399-3038.2012.01318.x
  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nature Reviews Disease Primers. 2020;6(1):86. doi:10.1038/s41572-020-00218-1
  • Rudmik L, Smith TL. Quality of life in patients with chronic rhinosinusitis. Curr Allergy Asthma Rep. 2011;11(3):247–252. doi:10.1007/s11882-010-0175-2
  • Dykewicz MS, Hamilos DL. Rhinitis and sinusitis. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S103–115. doi:10.1016/j.jaci.2009.12.989
  • La Mantia I, Ragusa M, Grigaliute E, et al. Sensibility, specificity, and accuracy of the Sinonasal Outcome Test 8 (SNOT-8) in patients with chronic rhinosinusitis (CRS): a cross-sectional cohort study. Europ Arch Oto Rhino Laryngol. 2023;280(7):3259–3264. doi:10.1007/s00405-023-07855-8
  • Cope EK, Goldberg AN, Pletcher SD, Lynch SV. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome. 2017;5(1):53. doi:10.1186/s40168-017-0266-6
  • Cho SH, Hamilos DL, Han DH, Laidlaw TM. Phenotypes of Chronic Rhinosinusitis. J Aller Clin Immunol Pract. 2020;8(5):1505–1511. doi:10.1016/j.jaip.2019.12.021
  • Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: APRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Aller Clin Immunol. 2013;131(6):1479–1490. doi:10.1016/j.jaci.2013.02.036
  • La Mantia I, Grigaliute E, Ragusa M, et al. Effectiveness and rapidity on olfactory function recovery in CRS patients treated with Dupilumab: a real life prospective controlled study. Europ Arch Oto Rhino Laryngol. 2023;2023:1.
  • Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Aller Clin Immunol. 2022;149(5):1491–1503. doi:10.1016/j.jaci.2022.02.016
  • Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allerg Clin Immunol. 2016;137(5):1449–1456.e1444. doi:10.1016/j.jaci.2015.12.1324
  • He Y, Fu Y, Wu Y, Zhu T, Li H. Pathogenesis and treatment of chronic rhinosinusitis from the perspective of sinonasal epithelial dysfunction. Front Med. 2023;2023:10.
  • Stevens WW, Schleimer RP, Kern RC. chronic rhinosinusitis with nasal polyps. J Aller Clin Immunol Pract. 2016;4(4):565–572. doi:10.1016/j.jaip.2016.04.012
  • Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12:331–357. doi:10.1146/annurev-pathol-052016-100401
  • Lam K, Schleimer R, Kern RC. the etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr Aller Asthma Rep. 2015;15(7):41. doi:10.1007/s11882-015-0540-2
  • Cho DY, Hunter RC, Ramakrishnan VR. The Microbiome and chronic rhinosinusitis. Immunol Aller Clin North Am. 2020;40(2):251–263. doi:10.1016/j.iac.2019.12.009
  • Antonino M, Nicolò M, Jerome Renee L, et al. Single-nucleotide polymorphism in chronic rhinosinusitis: a systematic review. Clin Otolaryngol. 2022;47(1):14–23. doi:10.1111/coa.13870
  • Suzuki M, Suzuki T, Watanabe M, et al. Role of intracellular zinc in molecular and cellular function in allergic inflammatory diseases. Allergol Internat. 2021;70(2):190–200. doi:10.1016/j.alit.2020.09.007
  • Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and human health: current understanding, engineering, and enabling technologies. Chem Rev. 2023;123(1):31–72. doi:10.1021/acs.chemrev.2c00431
  • Bassiouni A, Paramasivan S, Shiffer A, et al. Microbiotyping the sinonasal microbiome. Frontiers in Cellular and Infection Microbiology. 2020;10:137. doi:10.3389/fcimb.2020.00137
  • Paramasivan S, Bassiouni A, Shiffer A, et al. The international sinonasal microbiome study: a multicentre, multinational characterization of sinonasal bacterial ecology. Allergy. 2020;75(8):2037–2049. doi:10.1111/all.14276
  • Abreu NA, Nagalingam NA, Song Y, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012;4(151):151ra124. doi:10.1126/scitranslmed.3003783
  • Biswas K, Hoggard M, Jain R, Taylor MW, Douglas RG. The nasal microbiota in health and disease: variation within and between subjects. Front Microbiol. 2015;9:134. doi:10.3389/fmicb.2015.00134
  • Radaic A, Kapila YL. The oralome and its dysbiosis: new insights into oral microbiome-host interactions. Computat Struct Biotechnol J. 2021;19:1335–1360. doi:10.1016/j.csbj.2021.02.010
  • Tokajuk J, Deptuła P, Piktel E, et al. Cathelicidin LL-37 in health and diseases of the oral cavity. Biomedicines. 2022;10(5):1086. doi:10.3390/biomedicines10051086
  • Canovas J, Baldry M, Bojer MS, et al. Cross-talk between staphylococcus aureus and other staphylococcal species via the agr quorum sensing system. Front Microbiol. 2016;7:1733. doi:10.3389/fmicb.2016.01733
  • Coquant G, Aguanno D, Pham S, et al. Gossip in the gut: quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol. 2021;27(42):7247–7270. doi:10.3748/wjg.v27.i42.7247
  • Li K, Ly K, Mehta S, Braithwaite A. Importance of crosstalk between the microbiota and the neuroimmune system for tissue homeostasis. Clin Translat Immunol. 2022;11(5):e1394. doi:10.1002/cti2.1394
  • Wagner mackenzie B, Waite DW, Hoggard M, Douglas RG, Taylor MW, Biswas K. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environm Microbiol. 2017;19(1):381–392. doi:10.1111/1462-2920.13632
  • Joss TV, Burke CM, Hudson BJ, et al. Bacterial communities vary between sinuses in chronic rhinosinusitis patients. Front Microbiol. 2016:6. doi:10.3389/fmicb.2016.00006
  • Barshak MB, Durand ML. The role of infection and antibiotics in chronic rhinosinusitis. Laryngos Investigat Otolaryngol. 2017;2(1):36–42. doi:10.1002/lio2.61
  • Chmiel JF, Konstan MW, Elborn JS. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harbor Perspect Med. 2013;3(10):a009779. doi:10.1101/cshperspect.a009779
  • Jamal M, Ahmad W, Andleeb S, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81(1):7–11. doi:10.1016/j.jcma.2017.07.012
  • Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biof Microb. 2021;7(1):80. doi:10.1038/s41522-021-00251-2
  • Huang Y, Qin F, Li S, et al. The mechanisms of biofilm antibiotic resistance in chronic rhinosinusitis: a review. Med. 2022;101(49):e32168. doi:10.1097/MD.0000000000032168
  • Łusiak-szelachowska M, Weber-Dąbrowska B, Żaczek M, Górski A. Anti-biofilm activity of bacteriophages and lysins in chronic rhinosinusitis. Acta Virol. 2021;65(2):127–140. doi:10.4149/av_2021_203
  • Sabino HAC, Valera FCP, Santos DV, et al. Biofilm and planktonic antibiotic resistance in patients with acute exacerbation of chronic rhinosinusitis. Front Cell Infect Microbiol. 2021;11:813076. doi:10.3389/fcimb.2021.813076
  • Hoggard M, Biswas K, Zoing M, Wagner Mackenzie B, Taylor MW, Douglas RG. Evidence of microbiota dysbiosis in chronic rhinosinusitis. Internat Forum Aller Rhinol. 2017;7(3):230–239. doi:10.1002/alr.21871
  • Hochstim CJ, Masood R, Rice DH. Biofilm and persistent inflammation in endoscopic sinus surgery. Otolaryngol Head Neck Surg. 2010;143(5):697–698. doi:10.1016/j.otohns.2010.07.017
  • Foreman A, Wormald PJ. Different biofilms, different disease? A clinical outcomes study. Laryngoscope. 2010;120(8):1701–1706. doi:10.1002/lary.21024
  • Martinez-Paredes JF, Choby G, Marino M, et al. Endoscopic outcomes in patients with AERD treated with topical antibiotics and intranasal corticosteroids. Front Cell Infect Microbiol. 2022;12:812215. doi:10.3389/fcimb.2022.812215
  • Deal RT, Kountakis SE. Significance of nasal polyps in chronic rhinosinusitis: symptoms and surgical outcomes. Laryngoscope. 2004;114(11):1932–1935. doi:10.1097/01.mlg.0000147922.12228.1f
  • Psaltis AJ, Weitzel EK, Ha KR, Wormald PJ. The effect of bacterial biofilms on post-sinus surgical outcomes. Am J Rhinol. 2008;22(1):1–6. doi:10.2500/ajr.2008.22.3119
  • Singhal D, Foreman A, Jervis-Bardy J, Wormald PJ. Staphylococcus aureus biofilms: nemesis of endoscopic sinus surgery. Laryngoscope. 2011;121(7):1578–1583. doi:10.1002/lary.21805
  • Salzano FA, Marino L, Salzano G, et al. Microbiota composition and the integration of exogenous and endogenous signals in reactive nasal inflammation. J Immunol Res. 2018;2018:2724951. doi:10.1155/2018/2724951
  • Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic rhinosinusitis and the coagulation system. Allergy Asthma Immunol Res. 2015;7(5):421–430. doi:10.4168/aair.2015.7.5.421
  • De Boeck I, Wittouck S, Martens K, et al. Anterior nares diversity and pathobionts represent sinus microbiome in chronic rhinosinusitis. mSphere. 2019;4(6). doi:10.1128/mSphere.00532-19
  • Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nature Reviews Microbiology. 2017;15(5):259–270. doi:10.1038/nrmicro.2017.14
  • Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One. 2008;3(10):e3326. doi:10.1371/journal.pone.0003326
  • Sugimoto S, Iwamoto T, Takada K, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. Journal of Bacteriology. 2013;195(8):1645–1655. doi:10.1128/JB.01672-12
  • Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511–516. doi:10.1038/nature18634
  • Yan M, Pamp SJ, Fukuyama J, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe. 2013;14(6):631–640. doi:10.1016/j.chom.2013.11.005
  • Menberu MA, Liu S, Cooksley C, et al. Corynebacterium accolens has antimicrobial activity against staphylococcus aureus and methicillin-resistant S. aureus pathogens isolated from the sinonasal niche of chronic rhinosinusitis patients. Pathogens (Basel, Switzerland). 2021;10(2). doi:10.3390/pathogens10020207
  • Huang S, Hon K, Bennett C, et al. Corynebacterium accolens inhibits Staphylococcus aureus induced mucosal barrier disruption. Frontiers in Microbiology. 2022;2022:13.
  • Menberu MA, Hayes AJ, Liu S, Psaltis AJ, Wormald PJ, Vreugde S. Tween 80 and its derivative oleic acid promote the growth of Corynebacterium accolens and inhibit Staphylococcus aureus clinical isolates. Internat Foru Aller Rhinol. 2021;11(4):810–813. doi:10.1002/alr.22730
  • De Boeck I, Wittouck S, Martens K, et al. The nasal mutualist Dolosigranulum pigrum AMBR11 supports homeostasis via multiple mechanisms. iScience. 2021;24(9):102978. doi:10.1016/j.isci.2021.102978
  • Dunne EM, Murad C, Sudigdoadi S, et al. Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: a cross-sectional study. PLoS One. 2018;13(4):e0195098. doi:10.1371/journal.pone.0195098
  • Pettigrew MM, Gent JF, Revai K, Patel JA, Chonmaitree T. Microbial interactions during upper respiratory tract infections. Emerging Infectious Diseases. 2008;14(10):1584–1591. doi:10.3201/eid1410.080119
  • Regev-Yochay G, Dagan R, Raz M, et al. Association between carriage of streptococcus pneumoniae and staphylococcus aureus in children. JAMA. 2004;292(6):716–720. doi:10.1001/jama.292.6.716
  • Dunne EM, Smith-Vaughan HC, Robins-Browne RM, Mulholland EK, Satzke C. Nasopharyngeal microbial interactions in the era of pneumococcal conjugate vaccination. Vaccine. 2013;31(19):2333–2342. doi:10.1016/j.vaccine.2013.03.024
  • Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T. Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngology-- Head & Neck Surgery. 2013;139(12):1328–1338. doi:10.1001/jamaoto.2013.5465
  • Huntley KS, Raber J, Fine L, Bernstein JA. Influence of the microbiome on chronic rhinosinusitis with and without polyps: an evolving discussion. Frontiers in Allergy. 2021;2:737086. doi:10.3389/falgy.2021.737086
  • Diaz PI, Valm AM. Microbial interactions in oral communities mediate emergent biofilm properties. J Dent Res. 2020;99(1):18–25. doi:10.1177/0022034519880157
  • Morillo-Lopez V, Sjaarda A, Islam I, Borisy GG, Mark Welch JL. Corncob structures in dental plaque reveal microhabitat taxon specificity. Microbiome. 2022;10(1):145. doi:10.1186/s40168-022-01323-x
  • Suzuki M, Ramezanpour M, Cooksley C, et al. Zinc-depletion associates with tissue eosinophilia and collagen depletion in chronic rhinosinusitis. Rhinology. 2020;58(5):451–459. doi:10.4193/Rhin19.383
  • Islam T, Albracht-Schulte K, Ramalingam L, et al. Anti-inflammatory mechanisms of polyphenols in adipose tissue: role of gut microbiota, intestinal barrier integrity and zinc homeostasis. The Journal of Nutritional Biochemistry. 2023;115:109242. doi:10.1016/j.jnutbio.2022.109242
  • Yu M, Lee -W-W, Tomar D, et al. Regulation of T cell receptor signaling by activation-induced zinc influx. Journal of Experimental Medicine. 2011;208(4):775–785. doi:10.1084/jem.20100031
  • Cerasi M, Ammendola S, Battistoni A. Competition for zinc binding in the host-pathogen interaction. Frontiers in Cellular and Infection Microbiology. 2013;3:3. doi:10.3389/fcimb.2013.00003
  • Wan Y, Zhang B. The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases. Biomolecules. 2022;12(7):900. doi:10.3390/biom12070900
  • Yunker R, Han GG, Luong H, Vaishnava S. Intestinal epithelial cell intrinsic zinc homeostasis is critical for host-microbiome symbiosis. J Immunol. 2023;210(1_Supplement):18–82. doi:10.4049/jimmunol.210.Supp.82.18
  • Lopez CA, Skaar EP. The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe. 2018;23(6):737–748. doi:10.1016/j.chom.2018.05.008
  • Gielda LM, DiRita VJ. Zinc competition among the intestinal microbiota. MBio. 2012;3(4). doi:10.1128/mBio.00171-12
  • Djoko KY. Control of nutrient metal availability during host-microbe interactions: beyond nutritional immunity. J Biol Inorg Chem. 2023;28(5):451–456. doi:10.1007/s00775-023-02007-z
  • Liu JZ, Jellbauer S, Poe AJ, et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe. 2012;11(3):227–239. doi:10.1016/j.chom.2012.01.017
  • Xia P, Lian S, Wu Y, Yan L, Quan G, Zhu G. Zinc is an important inter-kingdom signal between the host and microbe. Veterin Res. 2021;52(1):39. doi:10.1186/s13567-021-00913-1
  • Amirapu S, Biswas K, Radcliff FJ, Wagner Mackenzie B, Ball S, Douglas RG. Sinonasal tissue remodelling during chronic rhinosinusitis. Int J Otolaryngol. 2021;2021:7428955. doi:10.1155/2021/7428955
  • Xiang R, Zhang QP, Zhang W, et al. Different effects of allergic rhinitis on nasal mucosa remodeling in chronic rhinosinusitis with and without nasal polyps. Eur Arch Otorhinolaryngol. 2019;276(1):115–130. doi:10.1007/s00405-018-5195-x
  • Lee HY, Pyo JS, Kim SJ. Distinct patterns of tissue remodeling and their prognostic role in chronic rhinosinusitis. ORL J Otorhinolaryngol Relat Spec. 2021;83(6):457–463. doi:10.1159/000515005
  • Kuhar HN, Tajudeen BA, Mahdavinia M, Gattuso P, Ghai R, Batra PS. Inflammatory infiltrate and mucosal remodeling in chronic rhinosinusitis with and without polyps: structured histopathologic analysis. Int Forum Allergy Rhinol. 2017;7(7):679–689. doi:10.1002/alr.21943
  • Do TQ, Barham HP, Earls P, et al. Clinical implications of mucosal remodeling from chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016;6(8):835–840. doi:10.1002/alr.21754
  • Meng J, Zhou P, Liu Y, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013;8(12):e82373. doi:10.1371/journal.pone.0082373
  • Radajewski K, Kalińczak-Górna P, Zdrenka M, et al. Short term pre-operative oral corticosteroids-tissue remodeling in chronic rhinosinusitis with nasal polyps. J Clin Med. 2021;10(15). doi:10.3390/jcm10153346
  • Watelet JB, Eloy PH, van Cauwenberge PB. Drug management in chronic rhinosinusitis: identification of the needs. Ther Clin Risk Manag. 2007;3(1):47–57. doi:10.2147/tcrm.2007.3.1.47
  • Lee K, Tai J, Lee SH, Kim TH. Advances in the knowledge of the underlying airway remodeling mechanisms in chronic rhinosinusitis based on the endotypes: a review. Int J Mol Sci. 2021;22:2.
  • Ryu G, Mo JH, Shin HW. Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2021;21(1):30–37. doi:10.1097/ACI.0000000000000701
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. doi:10.1038/nrm3758
  • Yan B, Wang Y, Li Y, Wang C, Zhang L. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019;9(3):270–280. doi:10.1002/alr.22243
  • Zhong B, Seah JJ, Liu F, Ba L, Du J, Wang Y. The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy. 2022;77(11):3217–3232. doi:10.1111/all.15384
  • Cheng J, Chen J, Zhao Y, Yang J, Xue K, Wang Z. MicroRNA-761 suppresses remodeling of nasal mucosa and epithelial-mesenchymal transition in mice with chronic rhinosinusitis through LCN2. Stem Cell Res Ther. 2020;11(1):151. doi:10.1186/s13287-020-01598-7
  • Xia Y, Wang H, Yin J. The role of epithelial-mesenchymal transition in chronic rhinosinusitis. Internat Arch Aller Immunol. 2022;183(10):1029–1039. doi:10.1159/000524950
  • Ye Y, Zhao J, Ye J, et al. The role of autophagy in the overexpression of MUC5AC in patients with chronic rhinosinusitis. Internat Immunopharmacol. 2019;71:169–180. doi:10.1016/j.intimp.2019.03.028
  • Hoggard M, Wagner Mackenzie B, Jain R, Taylor MW, Biswas K, Douglas RG. Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017;30(1):321–348.
  • Tong J, Gu Q. Expression and clinical significance of mucin gene in chronic rhinosinusitis. Curr All Asthma Rep. 2020;20(11):63. doi:10.1007/s11882-020-00958-w
  • Suzuki M, Ramezanpour M, Cooksley C, et al. Metallothionein-3 is a clinical biomarker for tissue zinc levels in nasal mucosa. Auris Nasus Larynx. 2021;48(5):890–897. doi:10.1016/j.anl.2021.01.019
  • Hooshangi S, Bentley WE. From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol. 2008;19(6):550–555. doi:10.1016/j.copbio.2008.10.007
  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology. 2010;8(1):15–25. doi:10.1038/nrmicro2259
  • Harrison F, Paul J, Massey RC, Buckling A. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J. 2008;2(1):49–55. doi:10.1038/ismej.2007.96
  • Desai SK, Kenney LJ. Switching lifestyles is an in vivo adaptive strategy of bacterial pathogens. FrontCellular Infec Microb. 2019;9. doi:10.3389/fcimb.2019.00421
  • Yarwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest. 2003;112(11):1620–1625. doi:10.1172/JCI200320442
  • George EA, Muir TW. Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem. 2007;8(8):847–855. doi:10.1002/cbic.200700023
  • Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front Microbiol. 2016;7:1230. doi:10.3389/fmicb.2016.01230
  • Mahdally NH, George RF, Kashef MT, Al-Ghobashy M, Murad FE, Attia AS. Staquorsin: a novel staphylococcus aureus agr-mediated quorum sensing inhibitor impairing virulence in vivo without notable resistance development. Front Microbiol. 2021;12:700494. doi:10.3389/fmicb.2021.700494
  • D’Argenio DA, Wu M, Hoffman LR, et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol. 2007;64(2):512–533. doi:10.1111/j.1365-2958.2007.05678.x
  • Mateu-Borrás M, González-Alsina A, Doménech-Sánchez A, et al. Pseudomonas aeruginosa adaptation in cystic fibrosis patients increases C5a levels and promotes neutrophil recruitment. Virulence. 2022;13(1):215–224. doi:10.1080/21505594.2022.2028484
  • Hennemann LC, LaFayette SL, Malet JK, et al. LasR-deficient Pseudomonas aeruginosa variants increase airway epithelial mICAM-1 expression and enhance neutrophilic lung inflammation. PLoS Pathog. 2021;17(3):e1009375. doi:10.1371/journal.ppat.1009375
  • Cho DY, Skinner D, Hunter RC, et al. Contribution of Short Chain Fatty Acids to the Growth of Pseudomonas aeruginosa in Rhinosinusitis. Front Cell Infect Microbiol. 2020;10:412. doi:10.3389/fcimb.2020.00412
  • Flynn JM, Niccum D, Dunitz JM, Hunter RC. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease. PLoS Pathog. 2016;12(8):e1005846. doi:10.1371/journal.ppat.1005846
  • Tikhomirova A, Trappetti C, Paton JC, Kidd SP. The outcome of H. influenzae and S. pneumoniae inter-species interactions depends on pH, nutrient availability and growth phase. Int J Med Microbiol. 2015;305(8):881–892. doi:10.1016/j.ijmm.2015.09.003
  • Xavier JB, Foster KR. Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A. 2007;104(3):876–881. doi:10.1073/pnas.0607651104
  • Shin S-H, M-K Y, Park J, Geum S-Y. Immunopathologic Role of Eosinophils in Eosinophilic Chronic Rhinosinusitis. Int J Mol Sci. 2022;23(21):13313. doi:10.3390/ijms232113313
  • Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics. 2022;14(12):2619. doi:10.3390/pharmaceutics14122619
  • Nomura K, Obata K, Keira T, et al. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res. 2014;15(1):21. doi:10.1186/1465-9921-15-21
  • Kim Y, Lee Y, Heo G, et al. Modulation of intestinal epithelial permeability via protease-activated receptor-2-induced autophagy. Cells. 2022;11:5.
  • Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. Microbiology. 2023;169(8). doi:10.1099/mic.0.001377
  • Giromini C, Baldi A, Rebucci R, et al. Role of short chain fatty acids to counteract inflammatory stress and mucus production in human intestinal HT29-MTX-E12 cells. Foods. 2022;11(13):1983. doi:10.3390/foods11131983
  • Pan M, Barua N, Ip M. Mucin-degrading gut commensals isolated from healthy faecal donor suppress intestinal epithelial inflammation and regulate tight junction barrier function. Front Immunol. 2022;2022;13.
  • Hong H, Liao S, Chen F, Yang Q, Wang DY. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020;75(11):2794–2804. doi:10.1111/all.14526
  • Kouakou YI, Lee RJ. Interkingdom detection of bacterial quorum-sensing molecules by mammalian taste receptors. Microorganisms. 2023;11(5):1295. doi:10.3390/microorganisms11051295
  • Martens K, Steelant B, Bullens DMA. Taste receptors: the gatekeepers of the airway epithelium. Cells. 2021;10(11):2889. doi:10.3390/cells10112889
  • Eum SY, Jaraki D, Bertrand L, András IE, Toborek M. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases. Am J Physiol Gastrointest Liver Physiol. 2014;306(11):G992–g1001. doi:10.1152/ajpgi.00016.2014
  • Nagi M, Chapple ILC, Sharma P, Kuehne SA, Hirschfeld J. Quorum sensing in oral biofilms: influence on host cells. Preprints. 2023;11(7):1688.
  • Prevete N, Salzano FA, Rossi FW, et al. Role(s) of formyl-peptide receptors expressed in nasal epithelial cells. J Biol Regul Homeost Agents. 2011;25(4):553–564.
  • Altonsy MO, Kurwa HA, Lauzon GJ, et al. Corynebacterium tuberculostearicum, a human skin colonizer, induces the canonical nuclear factor-κB inflammatory signaling pathway in human skin cells. Immun Inflamm Dis. 2020;8(1):62–79. doi:10.1002/iid3.284
  • Rha MS, Kim SW, Chang DY, et al. Superantigen-related T(H)2 CD4(+) T cells in nonasthmatic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145(5):1378–1388.e1310. doi:10.1016/j.jaci.2019.12.915
  • Xu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Front Cell Infect Microbiol. 2012;2:52. doi:10.3389/fcimb.2012.00052
  • John E, Laskow TC, Buchser WJ, et al. Zinc in innate and adaptive tumor immunity. J Transl Med. 2010;8(1):118. doi:10.1186/1479-5876-8-118
  • Fernández MM, Guan R, Swaminathan CP, Malchiodi EL, Mariuzza RA. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. J Biol Chem. 2006;281(35):25356–25364. doi:10.1074/jbc.M603969200
  • Pless DD, Ruthel G, Reinke EK, Ulrich RG, Bavari S. Persistence of zinc-binding bacterial superantigens at the surface of antigen-presenting cells contributes to the extreme potency of these superantigens as T-cell activators. Infect Immun. 2005;73(9):5358–5366. doi:10.1128/IAI.73.9.5358-5366.2005
  • Fraser JD, Urban RG, Strominger JL, Robinson H. Zinc regulates the function of two superantigens. Proc Natl Acad Sci U S A. 1992;89(12):5507–5511. doi:10.1073/pnas.89.12.5507
  • Suzuki M, Cooksley C, Suzuki T, et al. TLR signals in epithelial cells in the nasal cavity and paranasal sinuses. Front Allergy. 2021;2021:2.
  • Martens K, Seys SF, Alpizar YA, et al. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity. Clin Exp Allergy. 2021;51(1):87–98. doi:10.1111/cea.13760
  • Suvanprakorn P, Tongyen T, Prakhongcheep O, Laoratthaphong P, Chanvorachote P. Establishment of an anti-acne vulgaris evaluation method based on TLR2 and TLR4-mediated interleukin-8 production. Vivo. 2019;33(6):1929–1934.
  • Chegini Z, Didehdar M, Khoshbayan A, Karami J, Yousefimashouf M, Shariati A. The role of Staphylococcus aureus enterotoxin B in chronic rhinosinusitis with nasal polyposis. Cell Commun. 2022;20(1):29. doi:10.1186/s12964-022-00839-x
  • Wang X, Zhao C, Ji W, Xu Y, Guo H. Relationship of TLR2, TLR4 and tissue remodeling in chronic rhinosinusitis. Int J Clin Exp Pathol. 2015;8(2):1199–1212.
  • Conley DB, Tripathi A, Seiberling KA, et al. Superantigens and chronic rhinosinusitis: skewing of T-cell receptor V beta-distributions in polyp-derived CD4+ and CD8+ T cells. Am J Rhinol. 2006;20(5):534–539. doi:10.2500/ajr.2006.20.2941
  • Van Bruaene N, Bachert C. Tissue remodeling in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2011;11(1):8–11. doi:10.1097/ACI.0b013e32834233ef
  • Bassiouni A, Chen PG, Wormald PJ. Mucosal remodeling and reversibility in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2013;13(1):4–12. doi:10.1097/ACI.0b013e32835ad09e
  • Sanclement JA, Webster P, Thomas J, Ramadan HH. Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis. Laryngoscope. 2005;115(4):578–582. doi:10.1097/01.mlg.0000161346.30752.18
  • Hsu J, Peters AT. Pathophysiology of chronic rhinosinusitis with nasal polyp. Am J Rhinol Allergy. 2011;25(5):285–290. doi:10.2500/ajra.2011.25.3680
  • Bachert C, Zhang N, Patou J, van Zele T, Gevaert P. Role of staphylococcal superantigens in upper airway disease. Curr Opin Allergy Clin Immunol. 2008;8(1):34–38. doi:10.1097/ACI.0b013e3282f4178f
  • Ou J, Wang J, Xu Y, et al. Staphylococcus aureus superantigens are associated with chronic rhinosinusitis with nasal polyps: a meta-analysis. Eur Arch Otorhinolaryngol. 2014;271(10):2729–2736. doi:10.1007/s00405-014-2955-0
  • Ferreira-Duarte AP, Pinheiro-Torres AS, Takeshita WM, et al. Airway exposure to Staphylococcal enterotoxin type B (SEB) enhances the number and activity of bone marrow neutrophils via the release of multiple cytokines. Int Immunopharmacol. 2020;78:106009. doi:10.1016/j.intimp.2019.106009
  • Holm L. Dali server: structural unification of protein families. Nucleic Acids Res. 2022;50(W1):W210–W215. doi:10.1093/nar/gkac387
  • Greene CJ, Hu JC, Vance DJ, et al. Enhancement of humoral immunity by the type II heat-labile enterotoxin LT-IIb is dependent upon IL-6 and neutrophils. J Leukoc Biol. 2016;100(2):361–369. doi:10.1189/jlb.3A0415-153RR
  • Hajishengallis G, Tapping RI, Martin MH, et al. Toll-like receptor 2 mediates cellular activation by the B subunits of type II heat-labile enterotoxins. Infect Immun. 2005;73(3):1343–1349. doi:10.1128/IAI.73.3.1343-1349.2005
  • Odumosu O, Nicholas D, Yano H, Langridge W. AB Toxins: a Paradigm Switch from Deadly to Desirable. Toxins. 2010;2(7):1612–1645. doi:10.3390/toxins2071612
  • Yokoyama R, Itoh S, Kamoshida G, et al. Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect Immun. 2012;80(8):2816–2825. doi:10.1128/IAI.00399-12
  • Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG, Haas PA. Staphylococcal superantigen-like protein 13 activates neutrophils via formyl peptide receptor 2. Cell Microbiol. 2018;20(11):e12941. doi:10.1111/cmi.12941
  • Koymans KJ, Goldmann O, Karlsson CAQ, et al. The TLR2 antagonist staphylococcal superantigen-like protein 3 acts as a virulence factor to promote bacterial pathogenicity in vivo. J Innate Immun. 2017;9(6):561–573. doi:10.1159/000479100
  • Oku T, Kurisaka C, Ando Y, Tsuji T. Identification of human plasma C1 inhibitor as a target protein for staphylococcal superantigen-like protein 5 (SSL5). Biochem Biophys Res Commun. 2019;508(4):1162–1167. doi:10.1016/j.bbrc.2018.12.026
  • Cody V, Pace J, Nawar HF, et al. Structure-activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 12):1604–1612. doi:10.1107/S0907444912038917
  • Okano M, Fujiwara T, Haruna T, et al. Prostaglandin E(2) suppresses staphylococcal enterotoxin-induced eosinophilia-associated cellular responses dominantly through an E-prostanoid 2-mediated pathway in nasal polyps. J Allergy Clin Immunol. 2009;123(4):868–874.e813. doi:10.1016/j.jaci.2009.01.047
  • Zhang A, Dong Z, Yang T. Prostaglandin D2 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in MDCK cells. Am J Physiol Renal Physiol. 2006;291(6):F1332–1342. doi:10.1152/ajprenal.00131.2006
  • Honda K, Marquillies P, Capron M, Dombrowicz D. Peroxisome proliferator-activated receptor gamma is expressed in airways and inhibits features of airway remodeling in a mouse asthma model. J Allergy Clin Immunol. 2004;113(5):882–888. doi:10.1016/j.jaci.2004.02.036
  • Asaka C, Honda K, Ito E, Fukui N, Chihara J, Ishikawa K. Peroxisome proliferator-activated receptor-γ is expressed in eosinophils in nasal polyps. Int Arch Allergy Immunol. 2011;155 Suppl 1:57–63. doi:10.1159/000327294
  • Xu X, Reitsma S, Wang Y, Fokkens WJ. Highlights in the advances of chronic rhinosinusitis. Allergy. 2021;76(11):3349–3358. doi:10.1111/all.14892
  • Neveu WA, Allard JB, Dienz O, et al. IL-6 is required for airway mucus production induced by inhaled fungal allergens. J Immunol. 2009;183(3):1732–1738. doi:10.4049/jimmunol.0802923
  • Bautista MV, Chen Y, Ivanova VS, Rahimi MK, Watson AM, Rose MC. IL-8 regulates mucin gene expression at the posttranscriptional level in lung epithelial cells12. J Immunol. 2009;183(3):2159–2166. doi:10.4049/jimmunol.0803022
  • Maares M, Keil C, Straubing S, Robbe-Masselot C, Haase H. Zinc Deficiency Disturbs Mucin Expression, O-Glycosylation and Secretion by Intestinal Goblet Cells. Int J Mol Sci. 2020;21(17):6149. doi:10.3390/ijms21176149
  • Valle Arevalo A, Nobile CJ. Interactions of microorganisms with host mucins: a focus on Candida albicans. FEMS Microbiol Rev. 2020;44(5):645–654. doi:10.1093/femsre/fuaa027
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. doi:10.1194/jlr.R036012
  • Mao YJ, Chen HH, Wang B, Liu X, Xiong GY. Increased expression of MUC5AC and MUC5B promoting bacterial biofilm formation in chronic rhinosinusitis patients. Auris Nasus Larynx. 2015;42(4):294–298. doi:10.1016/j.anl.2014.12.004
  • Lucas SK, Villarreal AR, Ahmad MM, et al. Anaerobic microbiota derived from the upper airways impact staphylococcus aureus physiology. Infect Immun. 2021;89(9):e0015321. doi:10.1128/IAI.00153-21
  • Fletcher JR, Villareal AR, Penningroth MR, Hunter RC. Staphylococcus aureus Overcomes Anaerobe-Derived Short-Chain Fatty Acid Stress via FadX and the CodY Regulon. J Bacteriol. 2022;204(5):e00064–00022. doi:10.1128/jb.00064-22
  • Meissner S, Hagen F, Deiner C, et al. Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis. J Dairy Sci. 2017;100(8):6662–6675. doi:10.3168/jds.2016-12262
  • Yuan X, Tang H, Wu R, et al. Short-Chain fatty acids calibrate RARα activity regulating food sensitization. Front Immunol. 2021;2021:12.
  • Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 2018;11(3):785–795. doi:10.1038/mi.2017.75
  • Bortolotti P, Hennart B, Thieffry C, et al. Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship. BMC Microbiol. 2016;16(1):137. doi:10.1186/s12866-016-0756-x
  • Patnaude L, Mayo M, Mario R, et al. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci. 2021;271:119195. doi:10.1016/j.lfs.2021.119195
  • Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1(3):183–197. doi:10.1038/mi.2008.5
  • Seshadri S, Lin DC, Rosati M, et al. Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis. Allergy. 2012;67(7):920–928. doi:10.1111/j.1398-9995.2012.02848.x
  • Tarran R, Redinbo MR. Mammalian short palate lung and nasal epithelial clone 1 (SPLUNC1) in pH-dependent airway hydration. Int J Biochem Cell Biol. 2014;52:130–135. doi:10.1016/j.biocel.2014.03.002
  • Di YP. Functional roles of SPLUNC1 in the innate immune response against Gram-negative bacteria. Biochem Soc Trans. 2011;39(4):1051–1055. doi:10.1042/BST0391051
  • Garcia-Caballero A, Rasmussen JE, Gaillard E, et al. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci. 2009;106(27):11412–11417. doi:10.1073/pnas.0903609106
  • Zeissig S, Fromm A, Mankertz J, et al. Butyrate induces intestinal sodium absorption via Sp3-mediated transcriptional up-regulation of epithelial sodium channels. Gastroenterology. 2007;132(1):236–248. doi:10.1053/j.gastro.2006.10.033
  • Ahmad S, Kim CSK, Tarran R. The SPLUNC1-βENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia. Respir Res. 2020;21(1):190. doi:10.1186/s12931-020-01454-5
  • Jiang D, Wenzel SE, Wu Q, Bowler RP, Schnell C, Chu HW. Human neutrophil elastase degrades SPLUNC1 and impairs airway epithelial defense against bacteria. PLoS One. 2013;8:5.
  • Keir HR, Shoemark A, Huang JTJ, Chalmers JD. SPLUNC1 is a novel marker of disease severity and airway infection in bronchiectasis. Eur Respir J. 2021;58(5). doi:10.1183/13993003.01840-2021
  • Khanal S, Webster M, Niu N, et al. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J. 2021;58(5). doi:10.1183/13993003.00507-2020
  • Terryah ST, Fellner RC, Ahmad S, et al. Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L192–l205. doi:10.1152/ajplung.00546.2016
  • Huang Y, Wang M, Hong Y, et al. Reduced expression of antimicrobial protein secretory leukoprotease inhibitor and clusterin in chronic rhinosinusitis with nasal polyps. J Immunol Res. 2021;2021:1057186. doi:10.1155/2021/1057186
  • Tsou Y-A, Lin C-D, Chen H-C, et al. Interleukin-13 inhibits lipopolysaccharide-induced BPIFA1 expression in nasal epithelial cells. PLoS One. 2015;10:e0143484.
  • Bae CH, Na HG, Choi YS, Song SY, Kim YD. Clusterin induces MUC5AC expression via activation of NF-κB in human airway epithelial cells. Clin Exp Otorhinolaryngol. 2018;11(2):124–132. doi:10.21053/ceo.2017.00493
  • De Corso E, Baroni S, Onori ME, et al. Calprotectin in nasal secretion: a new biomarker of non-type 2 inflammation in CRSwNP. Acta Otorhinolaryngol Ital. 2022;42(4):355–363. doi:10.14639/0392-100X-N1800
  • Sumsion JS, Pulsipher A, Alt JA. Differential expression and role of S100 proteins in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2020;20(1):14–22. doi:10.1097/ACI.0000000000000595
  • Viksne RJ, Sumeraga G, Pilmane M. Antimicrobial and defense proteins in chronic rhinosinusitis with nasal polyps. Medicina. 2023;59(7):1259. doi:10.3390/medicina59071259
  • Tieu DD, Peters AT, Carter RG, et al. Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J Allergy Clin Immunol. 2010;125(3):667–675. doi:10.1016/j.jaci.2009.11.045
  • Isaksen B, Fagerhol MK. Calprotectin inhibits matrix metalloproteinases by sequestration of zinc. Mol Pathol. 2001;54(5):289–292. doi:10.1136/mp.54.5.289
  • Sroussi HY, Lu Y, Villines D, Sun Y. The down regulation of neutrophil oxidative metabolism by S100A8 and S100A9: implication of the protease-activated receptor-2. Mol Immunol. 2012;50(1–2):42–48. doi:10.1016/j.molimm.2011.12.001
  • Kehl-Fie Thomas E, Chitayat S, Hood MI, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of staphylococcus aureus. Cell Host Microbe. 2011;10(2):158–164. doi:10.1016/j.chom.2011.07.004
  • Obisesan AO, Zygiel EM, Nolan EM. Bacterial responses to iron withholding by calprotectin. Biochemistry. 2021;60(45):3337–3346. doi:10.1021/acs.biochem.1c00572
  • Wakeman CA, Moore JL, Noto MJ, et al. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat Commun. 2016;7:11951. doi:10.1038/ncomms11951
  • Wang J, Lonergan ZR, Gonzalez-Gutierrez G, et al. Multi-metal restriction by calprotectin impacts de novo flavin biosynthesis in Acinetobacter baumannii. Cell Chem Biol. 2019;26(5):745–755.e747. doi:10.1016/j.chembiol.2019.02.011
  • Gaddy JA, Radin JN, Cullen TW, et al. Helicobacter pylori resists the antimicrobial activity of calprotectin via lipid a modification and associated biofilm formation. MBio. 2015;6(6). doi:10.1128/mBio.01349-15
  • Rosen T, Hadley RC, Bozzi AT, Ocampo D, Shearer J, Nolan EM. Zinc sequestration by human calprotectin facilitates manganese binding to the bacterial solute-binding proteins PsaA and MntC. Metallomics. 2022;14(2). doi:10.1093/mtomcs/mfac001
  • Kwah JH, Peters AT. Nasal polyps and rhinosinusitis. Allergy Asthma Proc. 2019;40(6):380–384. doi:10.2500/aap.2019.40.4252
  • Ta NH. Will we ever cure nasal polyps? Ann R Coll Surg Engl. 2019;101(1):35–39. doi:10.1308/rcsann.2018.0149
  • Eloy P, Poirrier AL, De Dorlodot C, Van Zele T, Watelet JB, Bertrand B. Actual concepts in rhinosinusitis: a review of clinical presentations, inflammatory pathways, cytokine profiles, remodeling, and management. Curr Allergy Asthma Rep. 2011;11(2):146–162. doi:10.1007/s11882-011-0180-0
  • Goulioumis AK, Kourelis K, Gkorpa M, Danielides V. Pathogenesis of Nasal Polyposis: current Trends. Indian J Otolaryngol Head Neck Surg. 2023;75(Suppl S1):733–741. doi:10.1007/s12070-022-03247-2
  • Headland SE, Dengler HS, Xu D, et al. Oncostatin M expression induced by bacterial triggers drives airway inflammatory and mucus secretion in severe asthma. Sci Transl Med. 2022;14(627):eabf8188. doi:10.1126/scitranslmed.abf8188
  • Nosrati R, Kheirouri S, Ghodsi R, Ojaghi H. The effects of zinc treatment on matrix metalloproteinases: a systematic review. J Trace Elem Med Biol. 2019;56:107–115. doi:10.1016/j.jtemb.2019.08.001
  • Van Zele T, Gevaert P, Watelet JB, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004;114(4):981–983. doi:10.1016/j.jaci.2004.07.013
  • Seiberling KA, Conley DB, Tripathi A, et al. Superantigens and chronic rhinosinusitis: detection of staphylococcal exotoxins in nasal polyps. Laryngoscope. 2005;115(9):1580–1585. doi:10.1097/01.mlg.0000168111.11802.9c
  • Chen JB, James LK, Davies AM, et al. Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;139(4):1195–1204.e1111. doi:10.1016/j.jaci.2016.06.066
  • Yan G, Lei H, He M, et al. Melatonin triggers autophagic cell death by regulating RORC in Hodgkin lymphoma. Biomed Pharmacother. 2020;123:109811. doi:10.1016/j.biopha.2020.109811
  • Eberl G. RORγt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol. 2017;10(1):27–34. doi:10.1038/mi.2016.86
  • Oh TG, Wang SM, Acharya BR, et al. The nuclear receptor, RORγ, regulates pathways necessary for breast cancer metastasis. EBioMedicine. 2016;6:59–72. doi:10.1016/j.ebiom.2016.02.028
  • Hinic V, Lang C, Weisser M, Straub C, Frei R, Goldenberger D. Corynebacterium tuberculostearicum: a potentially misidentified and multiresistant Corynebacterium species isolated from clinical specimens. J Clin Microbiol. 2012;50(8):2561–2567. doi:10.1128/JCM.00386-12
  • Succar EF, Turner JH. Recent advances in understanding chronic rhinosinusitis endotypes. F1000Res. 2018;7. doi:10.12688/f1000research.16222.1
  • Weinrick B, Dunman PM, McAleese F, et al. Effect of mild acid on gene expression in staphylococcus aureus. J Bacteriol. 2004;186(24):8407–8423. doi:10.1128/JB.186.24.8407-8423.2004
  • Yang X, Dong F, Qian S, et al. Accessory gene regulator (agr) dysfunction was unusual in Staphylococcus aureus isolated from Chinese children. BMC Microbiol. 2019;19(1):95. doi:10.1186/s12866-019-1465-z
  • Shopsin B, Drlica-Wagner A, Mathema B, Adhikari RP, Kreiswirth BN, Novick RP. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J Infect Dis. 2008;198(8):1171–1174. doi:10.1086/592051
  • Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens. 2008;4(4):e1000052. doi:10.1371/journal.ppat.1000052
  • Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic targeting of the staphylococcus aureus accessory gene regulator (agr) System. Front Microbiol. 2018;9:55. doi:10.3389/fmicb.2018.00055
  • Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr. 2020;11(3):709–723. doi:10.1093/advances/nmz127
  • Quinn GA, Cole AM. Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology. 2007;122(1):80–89. doi:10.1111/j.1365-2567.2007.02615.x
  • Wu C, Chen YW, Scheible M, et al. Genetic and molecular determinants of polymicrobial interactions in Fusobacterium nucleatum. Proc Natl Acad Sci U S A. 2021;118:23.
  • de Steenhuijsen Piters WA, Sanders EA, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc London Series B Biol Sci. 2015;370:1675.
  • Mårtensson A, Cervin-Hoberg C, Huygens F, et al. Upper airway microbiome transplantation for patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2023;13(6):979–988. doi:10.1002/alr.23122
  • Nath S, Zilm P, Jamieson L, et al. Development and characterization of an oral microbiome transplant among Australians for the treatment of dental caries and periodontal disease: a study protocol. PLoS One. 2021;16(11):e0260433. doi:10.1371/journal.pone.0260433
  • Nascimento MM. Oral microbiota transplant: a potential new therapy for oral diseases. J Calif Dent Assoc. 2017;45(10):565–568. doi:10.1080/19424396.2017.12222506
  • Beikler T, Bunte K, Chan Y, et al. Oral microbiota transplant in dogs with naturally occurring periodontitis. J Dent Res. 2021;100(7):764–770. doi:10.1177/0022034521995423