162
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Serum Proteomic Analysis Revealed Biomarkers for Eosinophilic Chronic Rhinosinusitis with Nasal Polyps Pathophysiology

ORCID Icon, , , , &
Pages 805-821 | Received 11 Oct 2023, Accepted 01 Feb 2024, Published online: 07 Feb 2024

References

  • Scadding GK, Scadding GW. Biologics for chronic rhinosinusitis with nasal polyps (CRSwNP). J Allergy Clin Immunol. 2022;149:895–897. doi:10.1016/j.jaci.2021.10.029
  • Gelardi M, Bocciolini C, Notargiacomo M, et al. Chronic rhinosinusitis with nasal polyps: how to identify eligible patients for biologics in clinical practice. Acta Otorhinolaryngol Ital. 2022;42:75–81. doi:10.14639/0392-100X-N1699
  • Xie S, Zhang C, Xie Z, et al. Serum metabolomics identifies uric acid as a possible novel biomarker for predicting recurrence of chronic rhinosinusitis with nasal polyps. Rhinology. 2023;61:541–551. doi:10.4193/Rhin23.236
  • Xu X, Seet JE, Yap QV, et al. Latent class analysis of structured histopathology in prognosticating surgical outcomes of chronic rhinosinusitis with nasal polyps in Singapore. Rhinology. 2023;61:358–367. doi:10.4193/Rhin22.455
  • Sedaghat AR, Singerman KM, Phillips KM. Discordance of chronic rhinosinusitis disease control between EPOS guidelines and patient perspectives identifies utility of patient-rated control assessment. Rhinology. 2022;60:444–452. doi:10.4193/Rhin22.160
  • Fokkens WJ, Viskens AS, Backer V, et al. EPOS/EUFOREA update on indication and evaluation of biologics in chronic rhinosinusitis with nasal polyps 2023. Rhinology. 2023;61:194–202. doi:10.4193/Rhin22.489
  • La Mantia I, Ragusa M, Grigaliute E, et al. Sensibility, specificity, and accuracy of the sinonasal outcome test 8 (SNOT-8) in patients with chronic rhinosinusitis (CRS): a cross-sectional cohort study. Europ Archiv Oto Rhin Laryngol. 2023;280:3259–3264. doi:10.1007/s00405-023-07855-8
  • Abbas EE, Li C, Xie A, et al. Distinct clinical pathology and microbiota in chronic rhinosinusitis with nasal polyps endotypes. Laryngoscope. 2021;131:E34–E44.
  • Wu PW, Chiu CH, Huang YL, et al. Tissue eosinophilia and computed tomography features in paediatric chronic rhinosinusitis with nasal polyps requiring revision surgery. Rhinology. 2023;61:246–254.
  • Maspero JF, Katelaris CH, Busse WW, et al. Dupilumab efficacy in uncontrolled, moderate-to-severe asthma with self-reported chronic rhinosinusitis. J Aller Clin Immunol Pract. 2020;8:527–539.e529. doi:10.1016/j.jaip.2019.07.016
  • Jo S, Lee SH, Jo HR, et al. Eosinophil-derived TGFβ1 controls the new bone formation in chronic rhinosinusitis with nasal polyps. Rhinology. 2023;61:338–347. doi:10.4193/Rhin22.439
  • Lou H, Zhang N, Bachert C, et al. Highlights of eosinophilic chronic rhinosinusitis with nasal polyps in definition, prognosis, and advancement. Int Forum Allergy Rhinol. 2018;8:1218–1225. doi:10.1002/alr.22214
  • Dayon L, Cominetti O, Affolter M. Proteomics of human biological fluids for biomarker discoveries: technical advances and recent applications. Expert Rev Proteomics. 2022;19:131–151. doi:10.1080/14789450.2022.2070477
  • Utkarsh K, Kumar A, Khan A, et al. Circulating and non-circulating proteins and nucleic acids as biomarkers and therapeutic molecules in ovarian cancer. Genes Dis. 2023;10:1005–1018. doi:10.1016/j.gendis.2022.07.004
  • Zhao Y, Xue Q, Wang M, et al. Evolution of mass spectrometry instruments and techniques for blood proteomics. J Proteome Res. 2023;22:1009–1023. doi:10.1021/acs.jproteome.3c00102
  • Deutsch EW, Omenn GS, Sun Z, et al. Advances and utility of the human plasma proteome. J Proteome Res. 2021;20:5241–5263. doi:10.1021/acs.jproteome.1c00657
  • Tremlett H, Dai DL, Hollander Z, et al. Serum proteomics in multiple sclerosis disease progression. J Proteomics. 2015;118:2–11. doi:10.1016/j.jprot.2015.02.018
  • Astradsson T, Sellberg F, Ehrsson YT, et al. Serum proteomics in patients with head and neck cancer: peripheral blood immune response to treatment. Int J Mol Sci. 2022;23:6304. doi:10.3390/ijms23116304
  • Brunner PM, Suarez-Farinas M, He H, et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci Rep. 2017;7:8707. doi:10.1038/s41598-017-09207-z
  • Hu C, Dai Z, Xu J, et al. Proteome Profiling Identifies Serum Biomarkers in Rheumatoid Arthritis. Front Immunol. 2022;13:865425. doi:10.3389/fimmu.2022.865425
  • Mayo S, Benito-Leon J, Pena-Bautista C, et al. Recent evidence in epigenomics and proteomics biomarkers for early and minimally invasive diagnosis of alzheimer’s and parkinson’s diseases. Curr Neuropharmacol. 2021;19:1273–1303. doi:10.2174/1570159X19666201223154009
  • Zhou G, Wei P, Lan J, et al. TMT-based quantitative proteomics analysis and potential serum protein biomarkers for systemic lupus erythematosus. Clin Chim Acta. 2022;534:43–49. doi:10.1016/j.cca.2022.06.031
  • Geyer PE, Voytik E, Treit PV, et al. Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med. 2019;11:e10427.
  • Zainal NHM, Abas R, Mohamad Asri SF. Childhood allergy disease, early diagnosis, and the potential of salivary protein biomarkers. Mediators Inflamm. 2021;2021:9198249. doi:10.1155/2021/9198249
  • Dyball S, Rodziewicz M, Mendoza-Pinto C, et al. Predicting progression from undifferentiated connective tissue disease to definite connective tissue disease: a systematic review and meta-analysis. Autoimmun Rev. 2022;21:103184. doi:10.1016/j.autrev.2022.103184
  • Kao SS, Bassiouni A, Ramezanpour M, et al. Scoping review of chronic rhinosinusitis proteomics. Rhinology. 2020;58:418–429. doi:10.4193/Rhin20.034
  • Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50:1–12. doi:10.4193/Rhino12.000
  • Greguric T, Prokopakis E, Vlastos I, et al. Imaging in chronic rhinosinusitis: a systematic review of MRI and CT diagnostic accuracy and reliability in severity staging. J Neuroradiol. 2021;48:277–281. doi:10.1016/j.neurad.2021.01.010
  • Yu J, Hu C, Dai Z, et al. Dipeptidyl peptidase 4 as a potential serum biomarker for disease activity and treatment response in rheumatoid arthritis. Int Immunopharmacol. 2023;119:110203. doi:10.1016/j.intimp.2023.110203
  • Chen CL, Yao Y, Pan L, et al. Common fibrin deposition and tissue plasminogen activator downregulation in nasal polyps with distinct inflammatory endotypes. J Allergy Clin Immunol. 2020;146:677–681. doi:10.1016/j.jaci.2020.02.010
  • Wang T, Chen Y, Gao R, et al. Overexpression of AXL on macrophages associates with disease severity and recurrence in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol. 2023;121:110449. doi:10.1016/j.intimp.2023.110449
  • Wang C, Zhang L. Determining a cut-off value for eosinophilic chronic rhinosinusitis. Rhinology. 2022;60:318–319. doi:10.4193/Rhin22.090
  • Tsai PC, Lee TJ, Chang PH, et al. Role of serum eosinophil cationic protein in distinct endotypes of chronic rhinosinusitis. Rhinology. 2023;2023:1.
  • Zhang H, Xie S, Fan R, et al. Elevated ALCAM expression associated with endotypes and postoperative recurrence in chronic rhinosinusitis with nasal polyps. J Inflamm Res. 2022;15:1063–1077. doi:10.2147/JIR.S350609
  • Zhu KZ, He C, Li Z, et al. Development and multicenter validation of a novel radiomics-based model for identifying eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2023;61:132–143. doi:10.4193/Rhin22.361
  • Xie S, Zhang H, Liu Y, et al. The role of serum metabolomics in distinguishing chronic rhinosinusitis with nasal polyp phenotypes. Front Mol Biosci. 2020;7:593976. doi:10.3389/fmolb.2020.593976
  • Liang Y, Xie R, Xiong X, et al. Alterations of nasal microbiome in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol. 2023;151:1286–1295.e1282. doi:10.1016/j.jaci.2022.11.031
  • Wang J, Yang Y, Guo J, et al. The tissue lymphocyte-to-eosinophil ratio predicted long-term recurrence of eosinophilic CRSwNP. Am J Rhinol Allergy. 2023;37:563–570. doi:10.1177/19458924231179615
  • Pappa E, Vougas K, Zoidakis J, et al. Proteomic advances in salivary diagnostics. Bioch Bioph Acta Prote Prot. 2020;1868:140494. doi:10.1016/j.bbapap.2020.140494
  • Kessel C, Lavric M, Weinhage T, et al. Serum biomarkers confirming stable remission in inflammatory bowel disease. Sci Rep. 2021;11:6690. doi:10.1038/s41598-021-86251-w
  • Bakker DS, Nierkens S, Knol EF, et al. Confirmation of multiple endotypes in atopic dermatitis based on serum biomarkers. J Allergy Clin Immunol. 2021;147:189–198. doi:10.1016/j.jaci.2020.04.062
  • Diorio C, Shraim R, Myers R, et al. Comprehensive serum proteome profiling of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome patients with B-Cell ALL receiving CAR T19. Clin Cancer Res. 2022;28:3804–3813. doi:10.1158/1078-0432.CCR-22-0822
  • Ribeiro Vitorino T, Ferraz Do Prado A, Bruno de Assis Cau S, et al. MMP-2 and its implications on cardiac function and structure: interplay with inflammation in hypertension. Biochem Pharmacol. 2023;215:115684. doi:10.1016/j.bcp.2023.115684
  • Wang X, Sima Y, Zhao Y, et al. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J Allergy Clin Immunol. 2023;151:458–468. doi:10.1016/j.jaci.2022.10.010
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi:10.1016/j.cell.2010.03.015
  • Jia R, Li T, Wang N. Long noncoding RNA HOTAIR functions as ceRNA to regulate MMP2 in paraquat induced lung epithelial-mesenchymal transition. Toxicology. 2021;461:152891. doi:10.1016/j.tox.2021.152891
  • Corry DB, Kiss A, Song LZ, et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 2004;18:995–997. doi:10.1096/fj.03-1412fje
  • Kuwabara Y, Kobayashi T, D’Alessandro-Gabazza CN, et al. Role of matrix metalloproteinase-2 in eosinophil-mediated airway remodeling. Front Immunol. 2018;9:2163. doi:10.3389/fimmu.2018.02163
  • Janulaityte I, Januskevicius A, Rimkunas A, et al. Asthmatic eosinophils alter the gene expression of extracellular matrix proteins in airway smooth muscle cells and pulmonary fibroblasts. Int J Mol Sci. 2022;23:4086. doi:10.3390/ijms23084086
  • Mori S, Pawankar R, Ozu C, et al. Expression and Roles of MMP-2, MMP-9, MMP-13, TIMP-1, and TIMP-2 in allergic nasal mucosa. Allergy Asthma Immunol Res. 2012;4:231–239. doi:10.4168/aair.2012.4.4.231
  • Rimkunas A, Januskevicius A, Vasyle E, et al. Blood inflammatory-like and lung resident-like eosinophils affect migration of airway smooth muscle cells and their ECM-related proliferation in asthma. Int J Mol Sci. 2023;25:24. doi:10.3390/ijms25010024
  • Pan X, Zhang Y, Wang C, et al. Evaluation of nasal symptoms to distinguish eosinophilic from noneosinophilic nasal polyps based on peripheral blood. Allergy Asthma Proc. 2021;42:214–221. doi:10.2500/aap.2021.42.210004
  • Wang C, Zhou ML, Liu YC, et al. The roles of autophagy, mitophagy, and the Akt/mTOR pathway in the pathogenesis of chronic rhinosinusitis with nasal polyps. J Immunol Res. 2022;2022:2273121. doi:10.1155/2022/2273121
  • Zhu Z, Wang W, Zhang X, et al. Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2020;58:314–322. doi:10.4193/Rhin19.275
  • Shi LL, Ma J, Deng YK, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2021;76:497–509. doi:10.1111/all.14287
  • Abdelaziz MH, Abdelwahab SF, Wan J, et al. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med. 2020;18:18. doi:10.1186/s12967-019-02169-y
  • Sokulsky LA, Goggins B, Sherwin S, et al. GSTO1-1 is an upstream suppressor of M2 macrophage skewing and HIF-1α-induced eosinophilic airway inflammation. Clin Exp Allergy. 2020;50:609–624. doi:10.1111/cea.13582
  • Lee SH, Chaves MM, Kamenyeva O, et al. M2-like, dermal macrophages are maintained via IL-4/CCL24-mediated cooperative interaction with eosinophils in cutaneous leishmaniasis. Sci Immunol. 2020;2020:5.
  • Peterson S, Poposki JA, Nagarkar DR, et al. Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012;129:119–127. doi:10.1016/j.jaci.2011.08.021
  • Yao Y, Wang ZC, Liu JX, et al. Increased expression of TIPE2 in alternatively activated macrophages is associated with eosinophilic inflammation and disease severity in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rh. 2017;7:963–972. doi:10.1002/alr.21984