157
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment

, , , & ORCID Icon
Pages 933-945 | Received 18 Oct 2023, Accepted 23 Jan 2024, Published online: 11 Feb 2024

References

  • Wallace KL. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):6–21. doi:10.3748/wjg.v20.i1.6
  • Ng SC, Bernstein CN, Vatn MH, et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 2013;62(4):630–649. doi:10.1136/gutjnl-2012-303661
  • Gajendran M, Loganathan P, Jimenez G, et al. A comprehensive review and update on ulcerative colitis(). Dis Mon. 2019;65(12):100851. doi:10.1016/j.disamonth.2019.02.004
  • Rosenberg LN, Peppercorn MA. Efficacy and safety of drugs for ulcerative colitis. Expert Opin Drug Saf. 2010;9(4):573–592. doi:10.1517/14740331003639412
  • Diego C, Daniela P, Alessandro A. Frontiers in Drug Research and Development for Inflammatory Bowel Disease. Front Pharmacol. 2017;8:400.
  • Feuerstein JD, Moss AC, Farraye FA. Ulcerative Colitis. Mayo Clin Proc. 2019;94(7):1357–1373. doi:10.1016/j.mayocp.2019.01.018
  • Lissner D, Siegmund B. Ulcerative Colitis: current and Future Treatment Strategies. Dig Dis. 2013;31(1):91–94.
  • Wood KC, Gladwin MT. The hydrogen highway to reperfusion therapy. Nature Med. 2007;13(6):673–674.
  • Ostojic SM. Targeting molecular hydrogen to mitochondria: barriers and gateways. Pharmacol Res. 2015;94:51–53.
  • Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Med. 2007;13(6):688. doi:10.1038/nm1577
  • Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010;44(9):971–982. doi:10.3109/10715762.2010.500328
  • Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta. 2012;1820(5):586–594. doi:10.1016/j.bbagen.2011.05.006
  • Chuai Y, Gao F, Li B, et al. Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals. Biochem. J. 2012;442(1):49.
  • Kinji O, Mikako I, Masatoshi I, Masafumi I. Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases. Oxidative Med Cell. 2012;2012:353152.
  • McCarty MF. Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses. 2015;84(4):350–355. doi:10.1016/j.mehy.2015.01.018
  • Ohta S. [Initiation, development and potential of hydrogen medicine: toward therapeutic and preventive applications of molecular hydrogen against a variety of diseases]. J Japanese Biochemical Society. 2015;87(1):82–90.
  • Lebaron TW, Larson AJ, Ohta S, et al. Acute Supplementation with Molecular Hydrogen Benefits Submaximal Exercise Indices. Randomized, Double-Blinded, Placebo-Controlled Crossover Pilot Study. J Lifestyle Medcine. 2019;9(1):36–43.
  • LeBaron TWL. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes. Can. J. Physiol. Pharmacol. 2019;97:9.
  • Kiyomi N, Takashi A, Ikuroh O, et al. Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment. Curr Alzheimer Res. 2017;15(5):482–492.
  • Ono H, Nishijima Y, Ohta S, et al. Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: a Randomized Controlled Clinical Study on Safety and Neuroprotection. J Stroke Cerebrovasc Dis. 2017;26(11):2587–2594. doi:10.1016/j.jstrokecerebrovasdis.2017.06.012
  • Akagi J, Baba H. Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol Rep. 2019;41(1):301–311. doi:10.3892/or.2018.6841
  • LeBaron TW, Singh RB, Fatima G, et al. The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: a Randomized Controlled Trial. Diabetes Metab Syndr Obes. 2020;13:889–896. doi:10.2147/DMSO.S240122
  • Guan WJ, Wei CH, Chen AL, Sun XC, Zhong NS. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J Thoracic Dis. 2020;12(6):3448–3452.
  • Russell G, Rehman M, Lebaron T, Veal D, Hancock JT. An overview of SARS-CoV-2 (COVID-19) Infection and the Importance of Molecular Hydrogen as an Adjunctive Therapy. Mol Hydrogen. 2021.
  • Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T. Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun. 2009;386(1):11–15. doi:10.1016/j.bbrc.2009.05.117
  • He J, Xiong S, Zhang J, et al. Protective effects of hydrogen-rich saline on ulcerative colitis rat model. J Surg Res. 2013;185(1):174–181. doi:10.1016/j.jss.2013.05.047
  • Shen NY, Bi JB, Zhang JY, et al. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression. World J Gastroenterol. 2017;23(8):1375–1386. doi:10.3748/wjg.v23.i8.1375
  • LeBaron TW, Asgharzadeh F, Khazei M, Kura B, Tarnava A, Slezak J. Molecular hydrogen is comparable to sulfasalazine as a treatment for DSS-induced colitis in mice. EXCLI J. 2021;20:1106–1117. doi:10.17179/excli2021-3762
  • Ge L, Qi J, Shao B, et al. Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier. Gut Microbes. 2022;14(1):2013764. doi:10.1080/19490976.2021.2013764
  • Lihua S, Yao Z, Chuang Z, Xinwen D, Li Y, Hongli Y. Hydrogen-rich water partially alleviate inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic ulcerative colitis mice. Adv Med Sci. 2022;67(1):29–38.
  • Tian Y, Zhang Y, Wang Y, et al. Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front Physiol. 2021;12:789507. doi:10.3389/fphys.2021.789507
  • Florent CH, Flourie B, Leblond A, Rautureau M, Rambaud JC. Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Investig. 1985;75(2):608–613.
  • Siegmund B, Zeitz M. Innate and adaptive immunity in inflammatory bowel disease. World J Gastroenterol. 2011;17(27):6.
  • Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxid Med Cell Longev. 2017;2017:4535194. doi:10.1155/2017/4535194
  • Gokce EH, Sandri G, Bonferoni MC, et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364(1):76–86.
  • Shin SK, Cho JH, Kim EJ, et al. Anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium-induced colitis model. World J Gastroenterol. 2017;25:10.
  • Yokota H, Tsuzuki A, Shimada Y, et al. NOX1/NADPH oxidase expressed in colonic macrophages contributes to the pathogenesis of colonic inflammation in trinitrobenzene sulfonic acid-induced murine colitis. J Pharmacol Exp Ther. 2016;jpet.116.235580.
  • Grisham MB, Granger DN. Neutrophil-mediated mucosal injury. Role of reactive oxygen metabolites. Dig Dis Sci. 1988;33(3 Suppl):6S.
  • Roessner A, Kuester D, Malfertheiner P, Schneider-Stock R. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract. 2008;204(7):511–524. doi:10.1016/j.prp.2008.04.011
  • Sengul N, Isik S, Aslim B, Ucar G, Demirbag AE. The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Dig Dis Sci. 2011;56(3):707–714. doi:10.1007/s10620-010-1362-7
  • Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5(4):354–366. doi:10.1038/mi.2012.24
  • Okamoto R, Watanabe M. Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol. 2015;51(1):11–21.
  • Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354.
  • Khan I, Ullah N, Zha L, et al. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens. 2019;8:3.
  • Cario E. Toll‐like receptors in inflammatory bowel diseases: a decade later. Inflammatory Bowel Dis. 2010;16:9.
  • Sophie J, et al. Regulation of Interleukin-1- and Lipopolysaccharide-Induced NF-κB Activation by Alternative Splicing of MyD88. Curr Biol. 2002;12(6):467–471.
  • Mckenzie SJ, Baker MS, Buffinton GD, Doe WF. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Investig. 1996;98(1):136–141.
  • O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–693.
  • Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi:10.1038/nature09944
  • Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7(3):235–245. doi:10.1080/19490976.2016.1182288
  • Kelly WJ, Mackie RI, Attwood GT, Janssen PH, Mcallister TA, Leahy SC. Hydrogen and formate production and utilisation in the rumen and the human colon. Animal Microbiome. 2022;4(1):22.
  • Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe. 2011;10(4):336–347.
  • Vignais PM, Billoud B. Occurrence, Classification, and Biological Function of Hydrogenases: an Overview. Chem. Rev. 2007;107(10):4206–4272.
  • Levitt M, Jr BJ. Volume, composition, and source of intestinal gas. Gastroenterology. 1970;59(6):921–929.
  • Nakamura N, Lin HC, Mcsweeney CS, Mackie RI, Gaskins HR. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol. 2010;1(1):363–395.
  • Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. Isme J. 2012;6(1):57–70.
  • Strocchi A, Levitt MD. Maintaining intestinal H2 balance: credit the colonic bacteria. Gastroenterology. 1992;102(4):1424–1426. doi:10.1016/0016-5085(92)90790-6
  • Smith NW, Shorten PR, Altermann EH, Roy NC, Mcnabb WC. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes. 2018;10(3):270–288.
  • Kajiya M, Sato K, Silva MJB, et al. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem. Biophys. Res. Commun. 2009;386(2):316–321. doi:10.1016/j.bbrc.2009.06.024
  • Gibson GR, Cummings JH, Macfarlane GT. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Microbiol. 2010;65(3):241–247.
  • Rey FE, Gonzalez M, Cheng J, Wu M, Ahern PP, Gordon JI. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110(33):13582.
  • Sa’ad H. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochimica et Biophysica Acta. 2010;1801(11):1175–1183.
  • François B. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010.
  • Million M, Raoult D. Linking gut redox to human microbiome. Human Microbiome J. 2018;10:27–32. doi:10.1016/j.humic.2018.07.002
  • Zhou T, Li Z, Chen H. Melatonin alleviates lipopolysaccharide (LPS) / adenosine triphosphate (ATP)-induced pyroptosis in rat alveolar Type II cells (RLE-6TN) through nuclear factor erythroid 2-related factor 2 (Nrf2)-driven reactive oxygen species (ROS) downregulation. Bioengineered. 2022;13(1):1880–1892.
  • Zhai X, Chen X, Shi J, et al. Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic Biol Med. 2013;65:731–741.
  • Somineni HK, Kugathasan S. The Microbiome in Patients With Inflammatory Diseases. Clin Gastroenterol Hepatol. 2019;17(2):243–255.
  • Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol. 2012;2:33. doi:10.3389/fcimb.2012.00033
  • Macotpet A, Suksawat F, Sukon P, Pimpakdee K, Boonsiri P. Oxidative stress in cancer-bearing dogs assessed by measuring serum malondialdehyde. BMC Veterinary Res. 2013;9(1):101.
  • Oz HS, Chen TS, Villiers W. Green Tea Polyphenols and Sulfasalazine have Parallel Anti-Inflammatory Properties in Colitis Models. Front Immunol. 2013;4(5):132.
  • Jena G, Trivedi PP, Sandala B. Oxidative stress in ulcerative colitis: an old concept but a new concern. Free Radic Res. 2012;46(11):1339–1345.
  • Zhao X. Anti-inflammatory effects of kudingcha methanol extract (Ilex kudingcha C.J. Tseng) in dextran sulfate sodium-induced ulcerative colitis. Mol Med Rep. 2013;8(4):1256–1262.
  • Yamada T, Grisham MB. Role of neutrophil-derived oxidants in the pathogenesis of intestinal inflammation. Klinische Wochenschrift. 1991;69(21–23):988–994.
  • Sivaprasad R, Nagaraj M, Varalakshmi P. Combined efficacies of lipoic acid and 2,3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J Nutr Biochem. 2004;15(1):18–23.
  • Stupin A, Cosic A, Novak S, et al. Reduced Dietary Selenium Impairs Vascular Function by Increasing Oxidative Stress in Sprague-Dawley Rat Aortas. Int J Environ Res Public Health. 2017;14(6):591. doi:10.3390/ijerph14060591
  • Chen Z, Wang J, Yang W, Chen J, Yang J. FAM3A mediates PPARγ’s protection in liver ischemia-reperfusion injury by activating Akt survival pathway and repressing inflammation and oxidative stress. Oncotarget. 2017;8(30):49882–49896.
  • Oz HS, Chen TS, Mcclain CJ, Villiers WJSD. Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem. 2005;16(5):297–304.
  • Peluso M, Munnia A, Piro S, et al. Fruit and vegetable and fried food consumption and 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α] purin-10(3H)-one deoxyguanosine adduct formation. Free Radical Res. 2012;46(1):85.
  • Xiao C, Zhai X, Shi J, et al. Lactulose Mediates Suppression of Dextran Sodium Sulfate-Induced Colon Inflammation by Increasing Hydrogen Production. Dig Dis Sci. 2013;58(6):1560–1568.
  • Araujo JA, Min Z, Fen Y. Heme Oxygenase-1, Oxidation, Inflammation, and Atherosclerosis. Front Pharmacol. 2012;3(3):119.
  • Zhao G, Yu H, Hu Y, et al. Targeting HO-1 by Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative Stress and Anti-Inflammation Pathways. PLoS One. 2015;11(2):e0149032.
  • Turner JR, Buschmann MM, Romero-Calvo I, Sailer A, Shen L. The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol. 2014;36:204–212.
  • Martini E, Krug SM, Siegmund B, Neurath MF, Becker C. Mend Your Fences: the Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease. CMGH. 2017;4(1):33–46.
  • Salim S, Sderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflammatory Bowel Dis. 2015;1:362–381.
  • Peruzzi EP, Tolentino Y, Claudio B, Pereira D. The Role of Innate Immunity Receptors in the Pathogenesis of Inflammatory Bowel Disease. Mediators Inflammation. 2015;2015:936193.
  • Dheer R, Santaolalla R, Davies JM, et al. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis. Infect Immun. 2016;84(3):798–810.
  • Zhai Q, Ji H, Zheng Z, Yu X, Sun L, Liu X. Copper induces apoptosis in BA/F3beta cells: bax, reactive oxygen species, and NFkappaB are involved. J Cell Physiol. 2000;184(2):161–170.
  • Yao X, Cadwell K. Tumor Necrosis Factor-α–Induced Apoptosis in the Intestinal Epithelium due to Chronic Nuclear Factor Kappa B Signaling Is Mediated by Receptor Interacting Serine/Threonine Kinase 1 - ScienceDirect. CMGH. 2020;9(2):337–338.
  • Stephen M. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Ther Adv Gastroenterol. 2016;9(4):606–625.
  • Zeng LX, Tao J, Liu HL, Tan SW, Wu B. β-Arrestin2 encourages inflammation-induced epithelial apoptosis through ER stress/PUMA in colitis. Mucosal Immunol. 2015;8(3):683–695.
  • Rees WD, Stahl M, Jacobson K, et al. Enteroids Derived From Inflammatory Bowel Disease Patients Display Dysregulated Endoplasmic Reticulum Stress Pathways, Leading to Differential Inflammatory Responses and Dendritic Cell Maturation. J Crohns Colitis. 2020;14(7):948–961. doi:10.1093/ecco-jcc/jjz194
  • Hosomi S, Kaser A, Blumberg RS. Role of endoplasmic reticulum stress and autophagy as interlinking pathways in the pathogenesis of inflammatory bowel disease. Curr Opin Gastroenterol. 2015;31(1):81–88.
  • Keshavarzian A, Morgan G, Sedghi S, Gordon JH, Doria M. Role of reactive oxygen metabolites in experimental colitis. BMJ Publishing Group. 1990;7:56.
  • Miller TL, Wolin MJ. Pathways of Acetate, Propionate, and Butyrate Formation by the Human Fecal Microbial Flora. Appl. Environ. Microbiol. 1996;62(5):1589–1592.
  • Hcummings J, Wpomare E, Jbranch W, Pnaylor C, Tmacfarlane G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. J Br Society Gastroenterol. 1987:55.
  • Mcneil NI. The contribution of the large intestine to energy supplies in man1’2. Am. J. Clin. Nutr. 1984;39(2):338–342.
  • Cummings J. Fermentation in the human large intestine: evidence and implications for health. Lancet. 1983;321(8335):1206–1209.
  • Willemsen K. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E<sub>1 and E<sub>2 production by intestinal myofibroblasts. Gut. 2003.
  • Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341.
  • Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–1064. doi:10.1152/physrev.2001.81.3.1031
  • Luo X, Yue B, Yu Z, et al. Obacunone Protects Against Ulcerative Colitis in Mice by Modulating Gut Microbiota, Attenuating TLR4/NF-kappaB Signaling Cascades, and Improving Disrupted Epithelial Barriers. Front Microbiol. 2020;11:497. doi:10.3389/fmicb.2020.00497
  • Yue B, Ren J, Yu Z, et al. Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier. Biosci. Rep. 2020;40(7):567.
  • Sai-Long Z, Shu-Na W, Chao-Yu M. Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Front Immunol. 2017;8:1674.
  • Pei LY, Ke YS, Zhao HH, et al. Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol. 2019;19(1):10. doi:10.1186/s12876-019-0930-3
  • Xiao HW, Li Y, Luo D, et al. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp. Mol. Med. 2018;50(1):e433.
  • Higashimura Y, Baba Y, Inoue R, et al. Effects of molecular hydrogen-dissolved alkaline electrolyzed water on intestinal environment in mice. Med Gas Res. 2018;8(1):6–11. doi:10.4103/2045-9912.229597
  • Bordoni L, Gabbianelli R, Fedeli D, et al. Positive effect of an electrolyzed reduced water on gut permeability, fecal microbiota and liver in an animal model of Parkinson’s disease. PLoS One. 2019;14(10):e0223238. doi:10.1371/journal.pone.0223238
  • Edda R. Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease. Front Immunol. 2019;10:2754.
  • Ostojic SM. Hydrogen-rich water as a modulator of gut microbiota? Int J Med. 2021:78. doi:10.1016/j.jff.2021.104360
  • Hansson GC. Mucins and the Microbiome. Annu. Rev. Biochem. 2020;89(1):769–793. doi:10.1146/annurev-biochem-011520-105053
  • Kalam AMA, Manobendro S, Tiejun L, Jie Y. Probiotic Species in the Modulation of Gut Microbiota: an Overview. Biomed Res. Int. 2018;2018:9478630.
  • Wang J, Zhang C, Guo C, Li X. Chitosan Ameliorates DSS-Induced Ulcerative Colitis Mice by Enhancing Intestinal Barrier Function and Improving Microflora. Int J Mol Sci. 2019;20:22.
  • Cla B, Ga A, Ywa C, et al. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway - ScienceDirect. Pharmacol Res. 2012;152.
  • Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice. Immunity. 2019;50(1):212–224.e4.
  • Zuo T, Lu XJ, Zhang Y, et al. Gut mucosal virome alterations in ulcerative colitis. Gut. 2019;68(7):1169–1179. doi:10.1136/gutjnl-2018-318131
  • Baumgart D, Autenrieth C, Daniel M. Microbiome and Gut Inflammation. DMW. 2017;142(4):261–266.
  • Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The Gut Microbiota and Inflammation: an Overview. Int J Environ Res Public Health. 2020;17(20). doi:10.3390/ijerph17207618
  • Shen ZH, Zhu CX, Quan YS, et al. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol. 2018;24(1):10.
  • Verma R, Verma AK, Ahuja V. Real-Time Analysis of Mucosal Flora in Patients with Inflammatory Bowel Disease in India. J Clin Microbiol. 2010;48(11):4279–4282.
  • Marteau P. Bacterial flora in inflammatory bowel disease. Dig Dis. 2010;27(1):99–103.