82
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Intestinal Flora Imbalance Induced by Antibiotic Use in Rats

ORCID Icon, , , , , & show all
Pages 1789-1804 | Received 28 Oct 2023, Accepted 14 Mar 2024, Published online: 20 Mar 2024

References

  • Kang-xiao G, Kang-kang Y, Huan W, et al. The effect of modeling dysbacterial diarrhea with antibiotics on molecular diversity of intestinal microbiota in mice. Chin J Microecol. 2014;26:3.
  • Ting-ting. F. Study on regulation of antibiotics abuse in our country. Nanjing Univer Chin Med. 2012;2012:1.
  • Jacobs JP, Goudarzi M, Singh N, et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell Mol Gastroenterol Hepatol. 2016;2(6):750–766. doi:10.1016/j.jcmgh.2016.06.004
  • Yun G. Study on the abuse of antibiotics and the use of mistakes. Mod Chin Med. 2011;18:5.
  • Khan I, Ullah N, Zha L, et al. Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or Consequence? IBD treatment targeting the gut microbiome. Pathogens. 2019;8(3):126. doi:10.3390/pathogens8030126
  • Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018;9(2247). doi:10.3389/fmicb.2018.02247
  • Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J Nutr Biochem. 2018;61:111–128.
  • Sánchez-Alcoholado L, Ramos-Molina B, Otero A, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020;12(6):1406. doi:10.3390/cancers12061406
  • Gagnière J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501. doi:10.3748/wjg.v22.i2.501
  • Gao R, Gao Z, Huang L, Qin H. Gut microbiota and colorectal cancer. European J Clin Microbiol Infect Dis. 2017;36:5.
  • Kong F, Cai Y. Study insights into gastrointestinal cancer through the gut microbiota. Biomed Res Int 2019;2019:8721503.
  • Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015;7(29). doi:10.1186/s13099-015-0076-y
  • Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):6–21.
  • Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Rev. 2014;13(1):3–10.
  • Janeway CAJ, Travers P, W M. Immunobiology: The Immune System in Health and Disease. 5th ed. New York: Garland Science; 2001.
  • Fitzpatrick LR, Meirelles K, Small JS, Puleo FJ, Koltun WA, Cooney RN. A new model of chronic hapten-induced colitis in young rats. J Pediatr Gastroenterol Nutr. 2010;50(3):240–250. doi:10.1097/MPG.0b013e3181cb8f4a
  • Geiger BM, Gras-Miralles B, Ziogas DC, et al. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One. 2013;8(12):e83194. doi:10.1371/journal.pone.0083194
  • Krimi RB, Kotelevets L, Dubuquoy L, et al. Resistin-like molecule beta regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice. Inflamm Bowel Dis. 2008;14(7):931–941.
  • Barthel M, Hapfelmeier S, Quintanilla-Martínez L, et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 2003;71(5):2839–2858.
  • Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol. 2011;89(5):685–695. doi:10.1189/jlb.1109753
  • Zhang W. Animal model of antibiotic-associated diarrhea. Guangdong. 2015;2015:1–90.
  • Tong G, Qian H, Li D, Li J, Chen J, Li X. Establishment and evaluation of a specific antibiotic-induced inflammatory bowel disease model in rats. PLoS One. 2022;17(2):e0264194. doi:10.1371/journal.pone.0264194
  • Gillis C, Gill M, Marlett N, et al. Patients as partners in Enhanced Recovery After Surgery: a qualitative patient-led study. BMJ Open. 2017;7(6):e017002. doi:10.1136/bmjopen-2017-017002
  • Spanjersberg WR, van Sambeeck JD, Bremers A, Rosman C, van Laarhoven CJ. Systematic review and meta-analysis for laparoscopic versus open colon surgery with or without an ERAS programme. Surg Endosc. 2015;29(12):3443–3453. doi:10.1007/s00464-015-4148-3
  • Gramlich LM, Sheppard CE, Wasylak T, et al. Implementation of enhanced recovery after surgery: a strategy to transform surgical care across a health system. Implem Sci. 2017;12(1):67. doi:10.1186/s13012-017-0597-5
  • Miralpeix E, Nick AM, Meyer LA, et al. A call for new standard of care in perioperative gynecologic oncology practice: impact of enhanced recovery after surgery (ERAS) programs. Gynecologic Oncol. 2016;141(2):371–378. doi:10.1016/j.ygyno.2016.02.019
  • Morales W, Pimentel M, Hwang L, et al. Acute and chronic histological changes of the small bowel secondary to C. jejuni infection in a rat model for post-infectious IBS. Dig Dis Sci. 2011;56(9):2575–2584. doi:10.1007/s10620-011-1662-6
  • Abnous K, Brooks SP, Kwan J, et al. Diets enriched in oat bran or wheat bran temporally and differentially alter the composition of the fecal community of rats. J Nutr. 2009;139(11):2024–2031.
  • Kalmokoff M, Zwicker B, O’Hara M, et al. Temporal change in the gut community of rats fed high amylose cornstarch is driven by endogenous urea rather than strictly on carbohydrate availability. J Appl Microbiol. 2013;114(5):1516–1528.
  • Di S, Wang Y, Han L, et al. The intervention effect of traditional Chinese medicine on the intestinal flora and its metabolites in glycolipid metabolic disorders. Eviden Bas Complem Alternat Med. 2019;2019:2958920.
  • Group Lm. Expert consensus on the prevention and treatment of type 2 diabetes mellitus with dyslipidemia in China (revised version in 2017). Chin J Endocrinol Metab. 2017;33:11.
  • Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461–472. doi:10.1007/s11154-019-09512-0
  • Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cellul Molecul Life Sci. 2017;74(16):2959–2977. doi:10.1007/s00018-017-2509-x
  • Rapozo DC, Bernardazzi C, de Souza HS. Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol. 2017;23(12):2124–2140.
  • Wu HH, Wang S. Strain differences in the chronic mild stress animal model of depression. Behav Brain Res. 2010;213(1):94–102. doi:10.1016/j.bbr.2010.04.041
  • Shimada H, Yasutake A, Hirashima T, et al. Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats. Toxicol Vitro. 2008;22(2):338–343. doi:10.1016/j.tiv.2007.09.013
  • Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–1359. doi:10.1126/science.1124234
  • Hoffmann C, Hill DA, Minkah N, et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun. 2009;77(10):4668–4678.
  • Shen XJ, Rawls JF, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1(3):138–147. doi:10.4161/gmic.1.3.12360
  • Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev. 2004;9(2):180–197.
  • Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013;339:6116):166–172. doi:10.1126/science.1230720
  • DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–1150.
  • Hedin CR, McCarthy NE, Louis P, et al. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn’s disease and their unaffected siblings. Gut. 2014;63(10):1578–1586. doi:10.1136/gutjnl-2013-306226
  • Nguyen GC. Editorial: bugs and drugs: insights into the pathogenesis of inflammatory bowel disease. Am J Gastroenterol. 2011;106(12):2143–2145. doi:10.1038/ajg.2011.308
  • Sokol H, Lay C, Seksik P, Tannock GW. Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis. 2008;14(6):858–867. doi:10.1002/ibd.20392
  • Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661.
  • Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. 2017;75(1). doi:10.1093/femspd/ftx005
  • Kim BJ, Park T, Moon HC, et al. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation. Angewandte Chemie. 2014;53(52):14443–14446. doi:10.1002/anie.201408454
  • Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev. 2017;41(Supp_1):S95–s128.
  • Horie M, Miura T, Hirakata S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Experim Animal. 2017;66(4):405–416. doi:10.1538/expanim.17-0021
  • Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol. 2005;3(12):969–978.
  • Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nature Rev Dis Prim. 2016;2(16020). doi:10.1038/nrdp.2016.20
  • Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: rubik’s cube of clinical microbiology? Antibiotics. 2017;6(4):25. doi:10.3390/antibiotics6040025
  • Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26(4):822–880.
  • Golińska E, Tomusiak A, Gosiewski T, et al. Virulence factors of Enterococcus strains isolated from patients with inflammatory bowel disease. World J Gastroenterol. 2013;19(23):3562. doi:10.3748/wjg.v19.i23.3562
  • Inglin RC, Meile L, Stevens MJA. Clustering of pan- and core-genome of lactobacillus provides novel evolutionary insights for differentiation. BMC Genomics. 2018;19(1):284. doi:10.1186/s12864-018-4601-5
  • Liang W, Gao Y, Zhao Y, et al. Lactiplantibacillus plantarum ELF051 alleviates antibiotic-associated diarrhea by regulating intestinal inflammation and gut microbiota. Probiotics Antimicrob Proteins. 2023. doi:10.1007/s12602-023-10150-x
  • Liu L, Kirst ME, Zhao L, Li E, Wang GP. Microbiome resilience despite a profound loss of minority microbiota following clindamycin challenge in humanized gnotobiotic mice. Microbiol Spectr. 2022;10(1):e0196021.
  • Huang D, Li H, Lin Y, et al. Antibiotic-induced depletion of Clostridium species increases the risk of secondary fungal infections in preterm infants. Front Cell Infect Microbiol. 2022;12(981823). doi:10.3389/fcimb.2022.981823
  • Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14(10):573–584. doi:10.1038/nrgastro.2017.88
  • Mentella MC, Scaldaferri F, Pizzoferrato M, Gasbarrini A, Miggiano GAD. Nutrition, IBD and gut microbiota: a review. Nutrients. 2020;12(4):944. doi:10.3390/nu12040944
  • Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51.
  • Neurath MF, Finotto S, Glimcher LH. The role of Th1/Th2 polarization in mucosal immunity. Nature Med. 2002;8(6):567–573. doi:10.1038/nm0602-567
  • Kanamori Y, Murakami M, Sugiyama M, Hashimoto O, Matsui T, Funaba M. Interleukin-1β (IL-1β) transcriptionally activates hepcidin by inducing CCAAT enhancer-binding protein δ (C/EBPδ) expression in hepatocytes. J Biol Chem. 2017;292(24):10275–10287. doi:10.1074/jbc.M116.770974
  • Sudhakar M, Silambanan S, Chandran AS, Prabhakaran AA, Ramakrishnan R. C-Reactive Protein (CRP) and leptin receptor in obesity: binding of monomeric CRP to leptin receptor. Front Immunol. 2018;9:1167.
  • Yang CD, Huang HY, Shrestha S, Chen YH, Huang HD, Tseng CP. Large-scale functional analysis of CRP-mediated feed-forward loops. Int J Mol Sci. 2018;19(8). doi:10.3390/ijms19082335
  • Heroven AK, Sest M, Pisano F, et al. Crp induces switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and links nutritional status to virulence. Front Cell Infect Microbiol. 2012;2:158.
  • Edge R, Argáez C. CADTH Rapid Response Reports. In: Topical Antibiotics for Impetigo: A Review of the Clinical Effectiveness and Guidelines. edn ed. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2019.