108
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Quercetin Protects Against Global Cerebral ischemia‒reperfusion Injury by Inhibiting Microglial Activation and Polarization

, , , , , & ORCID Icon show all
Pages 1281-1293 | Received 10 Nov 2023, Accepted 20 Feb 2024, Published online: 25 Feb 2024

References

  • Wang W, Liu L, Chen C, et al. Protective effects of dopamine D2/D3 receptor agonist piribedil on learning and memory of rats exposed to global cerebral ischemia-reperfusion. Neurosci Lett. 2018;684:181–186. doi:10.1016/j.neulet.2018.08.011
  • Zeng X, Zhang YD, Ma RY, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia‒reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res. 2022;9(1):25. doi:10.1186/s40779-022-00383-2
  • Wang Y, Xiao G, He S, et al. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed Pharmacother. 2020;125:109945. doi:10.1016/j.biopha.2020.109945
  • Yu Z, Su G, Zhang L, et al. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER-ERK-NF-κB signaling pathway. Mol Med. 2022;28(1):142. doi:10.1186/s10020-022-00573-7
  • Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441–468. doi:10.1146/annurev-immunol-051116-052358
  • Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–643. doi:10.1146/annurev-physiol-022516-034406
  • Armstead WM, Hekierski H, Pastor P, et al. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl Stroke Res. 2019;10(1):104–111. doi:10.1007/s12975-018-0617-z
  • Ma Y, Wang J, Wang Y, et al. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–272. doi:10.1016/j.pneurobio.2016.01.005
  • Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–3070. doi:10.1161/STROKEAHA.112.659656
  • Zhang Q, Zhu W, Xu F, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17(6):e3000330. doi:10.1371/journal.pbio.3000330
  • Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, et al. Microglia: agents of the CNS pro-inflammatory response. Cells. 2020;9(7):1717. doi:10.3390/cells9071717
  • Wang XL, Chen F, Shi H, et al. Oxymatrine inhibits neuroinflammation byRegulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway. Int Immunopharmacol. 2021;100:108139. doi:10.1016/j.intimp.2021.108139
  • Sato S, Mukai Y. Modulation of chronic inflammation by quercetin: the beneficial effects on obesity. J Inflamm Res. 2020;13:421–431. doi:10.2147/JIR.S228361
  • Han X, Xu T, Fang Q, et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021;44:102010. doi:10.1016/j.redox.2021.102010
  • Wang S, Chen Y, Xia C, et al. Synthesis and evaluation of glycosylated quercetin to enhance neuroprotective effects on cerebral ischemia‒reperfusion. Bioorg Med Chem. 2022;73:117008. doi:10.1016/j.bmc.2022.117008
  • Benameur T, Soleti R, Porro C. The potential neuroprotective role of free and encapsulated quercetin mediated by miRNA against Neurological Diseases. Nutrients. 2021;13(4):1318. doi:10.3390/nu13041318
  • Yang J, Kim CS, Tu TH, et al. Quercetin protects obesity-induced hypothalamic inflammation by reducing microglia-mediated inflammatory responses via HO-1 induction. Nutrients. 2017;9(7):650. doi:10.3390/nu9070650
  • Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol Behav. 2017;171:69–78. doi:10.1016/j.physbeh.2017.01.006
  • Wang W, Liu L, Jiang P, et al. Levodopa improves learning and memory ability on global cerebral ischemia‒reperfusion injured rats in the Morris water maze test. Neurosci Lett. 2017;636:233–240. doi:10.1016/j.neulet.2016.11.026
  • Geocadin RG, Ghodadra R, Kimura T, et al. A novel quantitative EEG injury measure of global cerebral ischemia. Clin Neurophysiol. 2000;111(10):1779–1787. doi:10.1016/S1388-2457(00)00379-5
  • Dong X, Wang L, Song G, et al. Physcion protects rats against cerebral Ischemia‒Reperfusion injury via inhibition of TLR4/NF-kB signaling pathway. Drug Des Devel Ther. 2021;15:277–287. doi:10.2147/DDDT.S267856
  • Ren X, Ren J, Li Y, et al. Preparation of caffeic acid grafted chitosan self-assembled micelles to enhance oral bioavailability and antibacterial activity of quercetin. Front Vet Sci. 2023;5(10):1218025. doi:10.3389/fvets.2023.1218025
  • Zhang YM, Zhang ZY, Wang RX. Protective mechanisms of quercetin against myocardial ischemia–reperfusion injury. Front Physiol. 2020;31(11):956. doi:10.3389/fphys.2020.00956
  • Li L, Jiang W, Yu B, et al. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway. Biomed Pharmacother. 2023;168:115653. doi:10.1016/j.biopha.2023.115653
  • Le K, Song Z, Deng J, et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm Res. 2020;69(12):1201–1213. doi:10.1007/s00011-020-01402-5
  • Przykaza Ł. Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade. Front Immunol. 2021;12:782569. doi:10.3389/fimmu.2021.782569
  • Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci. 2021;23(1):14. doi:10.3390/ijms23010014
  • Sun XY, Li LJ, Dong QX, et al. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2021;18(1):131. doi:10.1186/s12974-021-02182-3
  • Tsai CF, Chen GW, Chen YC, et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients. 2021;14(1):67. doi:10.3390/nu14010067
  • Devanney NA, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: the role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol. 2020;329:113310. doi:10.1016/j.expneurol.2020.113310
  • Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64. doi:10.1038/nrneurol.2014.207
  • Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int J Mol Sci. 2022;24(1):95. doi:10.3390/ijms24010095
  • Deng Y, Tan R, Li F, et al. Isorhynchophylline Ameliorates Cerebral Ischemia/Reperfusion injury by inhibiting cx3cr1-mediated microglial activation and neuroinflammation. Front Pharmacol. 2021;12(12):574793. doi:10.3389/fphar.2021.574793
  • Li Y, Jiang Q, Wang L. appetite regulation of TLR4-induced inflammatory signaling. Front Endocrinol. 2021;12:777997. doi:10.3389/fendo.2021.777997
  • Zhong X, Liu M, Yao W, et al. Epigallocatechin-3-Gallate Attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res. 2019;63(21):e1801230. doi:10.1002/mnfr.201801230
  • Wu LR, Liu L, Xiong XY, et al. Vinpocetine alleviate cerebral ischemia/reperfusion injury by downregulating TLR4/MyD88/NF-κB signaling. Oncotarget. 2017;8(46):80315–80324. doi:10.18632/oncotarget.20699
  • Zhang Z, Qin P, Deng Y, et al. The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J Neuroinflammation. 2018;15(1):206. doi:10.1186/s12974-018-1246-x
  • Chen Y, Wang L, Zhang L, et al. Inhibition of connexin 43 hemichannels alleviates cerebral ischemia/reperfusion injury via the tlr4 signaling pathway. Front Cell Neurosci. 2018;12:372. doi:10.3389/fncel.2018.00372
  • Shirjang S, Mansoori B, Solali S, et al. Toll-like receptors as a key regulator of mesenchymal stem cell function: an up-to-date review. Cell Immunol. 2017;315:1–10. doi:10.1016/j.cellimm.2016.12.005
  • Cao LX, Lin SJ, Zhao SS, et al. Effects of acupuncture on microglial polarization and the TLR4/TRIF/MyD88 pathway in a rat model of traumatic brain injury. Acupunct Med. 2023;41(4):235–245. doi:10.1177/09645284221108214