121
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing

ORCID Icon, , , ORCID Icon &
Pages 1481-1501 | Received 17 Nov 2023, Accepted 13 Feb 2024, Published online: 05 Mar 2024

References

  • Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. Translational Res. 2021;236:109–116. doi:10.1016/j.trsl.2021.05.006
  • Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. J Immunol. 2017;199(1):17–24. doi:10.4049/jimmunol.1700223
  • Akkus G, Sert M. Diabetic foot ulcers: a devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. World j Diabetes. 2022;13(12):1106–1121. doi:10.4239/wjd.v13.i12.1106
  • Gosak L, Svensek A, Lorber M, Stiglic G. Artificial Intelligence Based Prediction of Diabetic Foot Risk in Patients with Diabetes: a Literature Review. Appl Sci. 2023;13(5):2823. doi:10.3390/app13052823
  • Hingorani A, LaMuraglia GM, Henke P, et al. The management of diabetic foot: a clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J Vascular Surg. 2016;63(2 Suppl):3s–21s. doi:10.1016/j.jvs.2015.10.003
  • Hicks CW, Selvarajah S, Mathioudakis N, et al. Burden of Infected Diabetic Foot Ulcers on Hospital Admissions and Costs. Ann Vasc Surg. 2016;33:149–158. doi:10.1016/j.avsg.2015.11.025
  • Prompers L, Schaper N, Apelqvist J, et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia. 2008;51(5):747–755. doi:10.1007/s00125-008-0940-0
  • Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62(1):194–204. doi:10.2337/db12-0420
  • Bitto A, Altavilla D, Pizzino G, et al. Inhibition of inflammasome activation improves the impaired pattern of healing in genetically diabetic mice. Br J Pharmacol. 2014;171(9):2300–2307. doi:10.1111/bph.12557
  • Ding S, Xu S, Ma Y, Liu G. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules. 2019;9(12).
  • Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63(3):1103–1114. doi:10.2337/db13-0927
  • Feng H, Gu J, Gou F, et al. High Glucose and Lipopolysaccharide Prime NLRP3 Inflammasome via ROS/TXNIP Pathway in Mesangial Cells. J Diabetes Res. 2016;2016:6973175. doi:10.1155/2016/6973175
  • Qiu YY, Tang LQ. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res. 2016;114:251–264. doi:10.1016/j.phrs.2016.11.004
  • Qiu Z, He Y, Ming H, Lei S. Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes. J Diabetes Res. 2019;2019:8151836. doi:10.1155/2019/8151836
  • Liu D, Yang P, Gao M, et al. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci. 2019;133(4):565–582. doi:10.1042/cs20180600
  • Huang C, Ogawa R. Role of Inflammasomes in Keloids and Hypertrophic Scars-Lessons Learned from Chronic Diabetic Wounds and Skin Fibrosis. Biomolecules. 2022;23(12).
  • Brokatzky D, Mostowy S. Pyroptosis in host defence against bacterial infection. Dis Models Mech. 2022;15(7). doi:10.1242/dmm.049414
  • Hu Y, Wang B, Li S, Yang S. Pyroptosis, and its Role in Central Nervous System Disease. J Mol Biol. 2022;434(4):167379. doi:10.1016/j.jmb.2021.167379
  • Hu X, Chen H, Xu H, et al. Role of Pyroptosis in Traumatic Brain and Spinal Cord Injuries. Int J Bio Sci. 2020;16(12):2042–2050. doi:10.7150/ijbs.45467
  • Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Mar. 2019;52(2):e12563. doi:10.1111/cpr.12563
  • Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310–4329. doi:10.7150/thno.71086
  • Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol. 2022;13:986565. doi:10.3389/fendo.2022.986565
  • Yang S, Feng Y, Chen L, et al. Disulfiram accelerates diabetic foot ulcer healing by blocking NET formation via suppressing the NLRP3/Caspase-1/GSDMD pathway. Translational res. 2023;254:115–127. doi:10.1016/j.trsl.2022.10.008
  • Yang H, Zhang Y, Du Z, Wu T, Yang C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging. 2023;15(3):791–809. doi:10.18632/aging.204513
  • Verma V, Dhanda RS, Møller NF, Yadav M. Inflammasomes and Their Role in Innate Immunity of Sexually Transmitted Infections. Front Immunol. 2016;7:540. doi:10.3389/fimmu.2016.00540
  • Khare S, Luc N, Dorfleutner A, Stehlik C. Inflammasomes and their activation. Critical Rev Immunol. 2010;30(5):463–487. doi:10.1615/critrevimmunol.v30.i5.50
  • Rathinam VA, Fitzgerald KA. Inflammasome Complexes: emerging Mechanisms and Effector Functions. Cell. 2016;165(4):792–800. doi:10.1016/j.cell.2016.03.046
  • Fu J, Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Ann Rev Immunol. 2023;41(1):301–316. doi:10.1146/annurev-immunol-081022-021207
  • Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665. doi:10.1038/nature15514
  • Wang K, Sun Q, Zhong X, et al. Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell. 2020;180(5):941–955.e20. doi:10.1016/j.cell.2020.02.002
  • Sun Q, Scott MJ. Caspase-1 as a multifunctional inflammatory mediator: noncytokine maturation roles. J Leukocyte Biol. 2016;100(5):961–967. doi:10.1189/jlb.3MR0516-224R
  • Liu X, Xia S. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discovery. 2021;20(5):384–405. doi:10.1038/s41573-021-00154-z
  • Li H, Wang Z, Fang X, et al. Poroptosis: a form of cell death depending on plasma membrane nanopores formation. iScience. 2022;25(6):104481. doi:10.1016/j.isci.2022.104481
  • Shi J, Gao W, Shao F. Pyroptosis: gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42(4):245–254. doi:10.1016/j.tibs.2016.10.004
  • Xu Z, Chen ZM, Wu X, Zhang L, Cao Y, Zhou P. Distinct Molecular Mechanisms Underlying Potassium Efflux for NLRP3 Inflammasome Activation. Front Immunol. 2020;11:609441. doi:10.3389/fimmu.2020.609441
  • Li Q, Shi N, Cai C, et al. The Role of Mitochondria in Pyroptosis. Front Cell Develop Biol. 2020;8:630771. doi:10.3389/fcell.2020.630771
  • Wang Y, Shi P, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 2019;11(12):1069–1082. doi:10.1093/jmcb/mjz020
  • De torre-minguela C, Gómez AI, Couillin I, Pelegrín P. Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis. Biomolecules. 2021;35(8):e21757. doi:10.1096/fj.202100085R
  • Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta pharmaceutica Sinica B. 2020;10(10):1880–1903. doi:10.1016/j.apsb.2020.07.003
  • Green JP, Yu S, Martín-Sánchez F, Pelegrin P, Lopez-Castejon G. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Biomolecules. 2018;115(40):E9371–e9380. doi:10.1073/pnas.1812744115
  • Loomis WP, Bergsbaken T. Monitoring Calcium Fluxes and Lysosome Exocytosis During Pyroptosis. Methods Mol Biol. 2023;2641:171–178. doi:10.1007/978-1-0716-3040-2_14
  • Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: an Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328. doi:10.3390/ijms20133328
  • Pelegrin P, Surprenant A. The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signalling. 2009;5(2):129–137. doi:10.1007/s11302-009-9141-7
  • Dahl G. ATP release through pannexon channels. Philos Trans R Soc London. 2015;370(1672). doi:10.1098/rstb.2014.0191
  • Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–121. doi:10.1038/nature10558
  • Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci. 2020;21(2):379. doi:10.3390/ijms21020379
  • Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology. 2017;152(2):207–217. doi:10.1111/imm.12787
  • Burdette BE, Esparza AN, Zhu H, Wang S. Gasdermin D in pyroptosis. Acta pharmaceutica Sinica B. 2021;11(9):2768–2782. doi:10.1016/j.apsb.2021.02.006
  • Aglietti RA, Estevez A, Gupta A, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci USA. 2016;113(28):7858–7863. doi:10.1073/pnas.1607769113
  • Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. Immunity. 2015;43(5):923–932. doi:10.1016/j.immuni.2015.10.009
  • Katsnelson MA, Rucker LG, Russo HM, Dubyak GR. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Iimmunol. 2015;194(8):3937–3952. doi:10.4049/jimmunol.1402658
  • Inoue S, Browne G, Melino G, Cohen GM. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ 2009;16(7):1053–1061. doi:10.1038/cdd.2009.29
  • Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99–103. doi:10.1038/nature22393
  • Hou J, Zhao R, Xia W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nature Cell Biol. 2020;22(10):1264–1275. doi:10.1038/s41556-020-0575-z
  • Zhang JY, Zhou B, Sun RY, et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021;31(9):980–997. doi:10.1038/s41422-021-00506-9
  • van Daalen KR, Reijneveld JF, Bovenschen N. Modulation of Inflammation by Extracellular Granzyme A. Front Immunol. 2020;11:931. doi:10.3389/fimmu.2020.00931
  • Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Ann Rev Immunol. 2008;26(1):389–420. doi:10.1146/annurev.immunol.26.021607.090404
  • Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415–420. doi:10.1038/s41586-020-2071-9
  • Zhou Z, He H. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Biomolecules. 2020;368(6494). doi:10.1126/science.aaz7548
  • Feng Z, Zang C, Zhang L, Yin S, Zhuang Q, Wang X. STING activation promotes inflammatory response and delays skin wound healing in diabetic mice. Biochem Biophys Res Commun. 2022;611:126–131. doi:10.1016/j.bbrc.2022.04.085
  • Balderas-Cordero D, Canales-Alvarez O, Sánchez-Sánchez R, Cabrera-Wrooman A, Canales-Martinez MM, Rodriguez-Monroy MA. Anti-Inflammatory and Histological Analysis of Skin Wound Healing through Topical Application of Mexican Propolis. Int J Mol Sci. 2023;24(14). doi:10.3390/ijms241411831
  • Mori R, Tanaka K, de Kerckhove M, et al. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring. Am J Pathol. 2014;184(9):2465–2479. doi:10.1016/j.ajpath.2014.05.012
  • Zhao P, Cai Z, Zhang X, Liu M, Xie F, Liu Z. Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing. Biomolecules. 2023;16(6).
  • Yang P, Wang X. Topical insulin application accelerates diabetic wound healing by promoting anti-inflammatory macrophage polarization. Int J Med. 2020;133(19).
  • Ketelut-Carneiro N, Fitzgerald KA. The Many Ways a Cell Can Die. J Mol Biol. 2022;434(4):167378. doi:10.1016/j.jmb.2021.167378
  • Ito H, Kanbe A, Sakai H, Seishima M. Activation of NLRP3 signalling accelerates skin wound healing. Exp dermatol. 2018;27(1):80–86. doi:10.1111/exd.13441
  • Dai J, Zhang X, Wang Y, Chen H, Chai Y. ROS-activated NLRP3 inflammasome initiates inflammation in delayed wound healing in diabetic rats. Int J Clin Exp Pathol. 2017;10(9):9902–9909.
  • Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci. 2016;17(12):2085. doi:10.3390/ijms17122085
  • Ao X, Yan H, Huang M, et al. Lavender essential oil accelerates lipopolysaccharide-induced chronic wound healing by inhibiting caspase-11-mediated macrophage pyroptosis. Kaohsiung J Med Sci. 2023;39(5):511–521. doi:10.1002/kjm2.12654
  • Ou ZL, Wang J, Shi R, Deng J, Liu Y, Luo GX. Influence of reactive oxygen species responsive self-assembled nanomicelle loaded with pyroptosis inhibitor on full-thickness skin defects in diabetic rats. Zhonghua shao shang za zhi. 2023;39(1):35–44. doi:10.3760/cma.j.cn501225-20221109-00483
  • Chen C, Wang Q, Li D, Qi Z, Chen Y, Wang S. MALAT1 participates in the role of platelet-rich plasma exosomes in promoting wound healing of diabetic foot ulcer. Int J Biol Macromol. 2023;238:124170. doi:10.1016/j.ijbiomac.2023.124170
  • He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530(7590):354–357. doi:10.1038/nature16959
  • Sharif H, Wang L, Wang WL, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019;570(7761):338–343. doi:10.1038/s41586-019-1295-z
  • Song Y, Yang L, Guo R, Lu N, Shi Y, Wang X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem Biophys Res Commun. 2019;509(2):359–366. doi:10.1016/j.bbrc.2018.12.139
  • Wu A, Sun W, Mou F. lncRNA‑MALAT1 promotes high glucose‑induced H9C2 cardiomyocyte pyroptosis by downregulating miR‑141‑3p expression. Mol Med Rep. 2021;23(4).
  • Zuo Y, Chen L, He X, et al. Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes Metabolic Syndrome Obesity. 2021;14:1631–1645. doi:10.2147/dmso.s298950
  • Boal-Carvalho I, Mazel-Sanchez B, Silva F, Garnier L, Yildiz S, Bonifacio JP. Influenza A viruses limit NLRP3-NEK7-complex formation and pyroptosis in human macrophages. EMBO Reports. 2020;21(12):e50421. doi:10.15252/embr.202050421
  • He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25(12):1285–1298. doi:10.1038/cr.2015.139
  • Lara-Reyna S, Caseley EA. Inflammasome activation: from molecular mechanisms to autoinflammation. Clinical Translational immunol. 2022;11(7):e1404. doi:10.1002/cti2.1404
  • Yu ZW, Zhang J, Li X, Wang Y, Fu YH, Gao XY. A new research hot spot: the role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications. Life Sci. 2020;240:117138. doi:10.1016/j.lfs.2019.117138
  • Xu YF, Wu YX, Wang HM, Gao CH, Xu YY, Yan Y. Bone marrow-derived mesenchymal stem cell-conditioned medium ameliorates diabetic foot ulcers in rats. Clinics. 2023;78:100181. doi:10.1016/j.clinsp.2023.100181
  • Kambara H, Liu F, Zhang X, et al. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Rep. 2018;22(11):2924–2936. doi:10.1016/j.celrep.2018.02.067
  • Karnam K, Sedmaki K, Sharma P, Venuganti VVK, Kulkarni OP. Selective inhibition of PKR by C16 accelerates diabetic wound healing by inhibiting NALP3 expression in mice. Feb. 2023;72(2):221–236. doi:10.1007/s00011-022-01667-y
  • Weinheimer-Haus EM, Mirza RE, Koh TJ. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing. PLoS One. 2015;10(3):e0119106. doi:10.1371/journal.pone.0119106
  • Ding Y, Ding X. Relevance of NLRP3 Inflammasome-Related Pathways in the Pathology of Diabetic Wound Healing and Possible Therapeutic Targets. Oxidative Med Cell Longevity. 2022;2022:9687925. doi:10.1155/2022/9687925
  • Geng K, Ma X, Jiang Z, et al. Innate Immunity in Diabetic Wound Healing: focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol. 2021;12:653940. doi:10.3389/fphar.2021.653940
  • Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Biomolecules. 2018;50(4):1–14. doi:10.1038/s12276-018-0058-5
  • Zhang X, Dai J, Li L, Chen H. NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages. J Diabetes Res. 2017;2017:5281358. doi:10.1155/2017/5281358
  • Wan L, Bai X, Zhou Q, et al. The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Bio Sci. 2022;18(2):809–825. doi:10.7150/ijbs.63219
  • Lee MKS, Sreejit G, Nagareddy PR, Murphy AJ. Attack of the NETs! NETosis primes IL-1β-mediated inflammation in diabetic foot ulcers. Clin Sci. 2020;134(12):1399–1401. doi:10.1042/cs20200240
  • Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol. 2007;17(13):1140–1145. doi:10.1016/j.cub.2007.05.074
  • Wang Z, Zhang S. NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Med Cell Longevity. 2020;2020:4063562. doi:10.1155/2020/4063562
  • Luo Z. Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Adv Wound Care. 2023;12(11):644–656. doi:10.1089/wound.2021.0148
  • González P, Lozano P. Hyperglycemia and Oxidative Stress: an Integral, Updated and Critical Overview of Their Metabolic Interconnections. Biomolecules. 2023;24(11).
  • Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87. doi:10.1016/j.freeradbiomed.2013.07.036
  • Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–140. doi:10.1038/ni.1831
  • Jiang L, Fei D, Gong R, et al. CORM-2 inhibits TXNIP/NLRP3 inflammasome pathway in LPS-induced acute lung injury. Inflammation Res. 2016;65(11):905–915. doi:10.1007/s00011-016-0973-7
  • Zhan Y, Xu D, Tian Y, et al. Novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death. JHEP Rep. 2022;4(9):100532. doi:10.1016/j.jhepr.2022.100532
  • Jia Y, Cui R, Wang C, et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 2020;32:101534. doi:10.1016/j.redox.2020.101534
  • Jung H, Kim MJ, Kim DO, et al. TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab. 2013;18(1):75–85. doi:10.1016/j.cmet.2013.06.002
  • Masutani H. Thioredoxin-Interacting Protein in Cancer and Diabetes. Antioxid Redox Signaling. 2022;36(13–15):1001–1022. doi:10.1089/ars.2021.0038
  • Yoshihara E. TXNIP/TBP-2: a Master Regulator for Glucose Homeostasis. Antioxidants. 2020;9(8):765. doi:10.3390/antiox9080765
  • Joshi S, Wang W, Peck AB, Khan SR. Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol. 2015;193(5):1684–1691. doi:10.1016/j.juro.2014.11.093
  • Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327(5963):296–300. doi:10.1126/science.1184003
  • Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol. 2011;187(11):6143–6156. doi:10.4049/jimmunol.1101284
  • Deng Y, Han X, Yao Z, et al. PPARα Agonist Stimulated Angiogenesis by Improving Endothelial Precursor Cell Function Via a NLRP3 Inflammasome Pathway. Cell Phys Biochem. 2017;42(6):2255–2266. doi:10.1159/000479999
  • Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011;2(12):1117–1133. doi:10.1177/1947601911423654
  • Luo Z, Tian M, Yang G, et al. Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduction Targeted Therapy. 2022;7(1):218. doi:10.1038/s41392-022-01080-1
  • Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in Cell Death, Inflammation, and Pyroptosis. Ann Rev Immunol. 2020;38(1):567–595. doi:10.1146/annurev-immunol-073119-095439
  • Eguchi R, Suzuki A, Miyakaze S, Kaji K, Ohta T. Hypoxia induces apoptosis of HUVECs in an in vitro capillary model by activating proapoptotic signal p38 through suppression of ERK1/2. Cell. Signalling. 2007;19(6):1121–1131. doi:10.1016/j.cellsig.2006.12.004
  • Zhang M, Chen Y, Qiu Y, et al. PCSK9 Promotes Hypoxia-Induced EC Pyroptosis by Regulating Smac Mitochondrion-Cytoplasm Translocation in Critical Limb Ischemia. JACC. 2023;8(9):1060–1077. doi:10.1016/j.jacbts.2023.05.016
  • Koppaka V, Thompson DC, Chen Y, et al. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev. 2012;64(3):520–539. doi:10.1124/pr.111.005538
  • Hu JJ, Liu X. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nature Immunol. 2020;21(7):736–745. doi:10.1038/s41590-020-0669-6
  • Zhang Y, Zhang R, Han X. Disulfiram inhibits inflammation and fibrosis in a rat unilateral ureteral obstruction model by inhibiting gasdermin D cleavage and pyroptosis. Int J Med. 2021;70(5):543–552. doi:10.1007/s00011-021-01457-y
  • Hu S, Wang L, Xu Y, Li F, Wang T. Disulfiram attenuates hypoxia-induced pulmonary hypertension by inhibiting GSDMD cleavage and pyroptosis in HPASMCs. Respir Res. 2022;23(1):353. doi:10.1186/s12931-022-02279-0
  • Zhuang L, Luo X, Wu S, et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. Cell Death Discovery. 2022;8(1):379. doi:10.1038/s41420-022-01167-2
  • Cai Q, Sun Z, Xu S, et al. Disulfiram ameliorates ischemia/reperfusion-induced acute kidney injury by suppressing the caspase-11-GSDMD pathway. Renal Failure. 2022;44(1):1169–1181. doi:10.1080/0886022x.2022.2098764
  • Squillaro T, Peluso G, Galderisi U. Clinical Trials With Mesenchymal Stem Cells: an Update. Cell Transplantation. 2016;25(5):829–848. doi:10.3727/096368915x689622
  • Lee BH, Park JN, Lee EJ, Moon YW, Wang JH. Therapeutic Efficacy of Spherical Aggregated Human Bone Marrow-Derived Mesenchymal Stem Cells Cultured for Osteochondral Defects of Rabbit Knee Joints. Am j Sports Med. 2018;46(9):2242–2252. doi:10.1177/0363546518780991
  • Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomaterials Res. 2018;22:36. doi:10.1186/s40824-018-0148-4
  • Wong VW, Sorkin M, Gurtner GC. Enabling stem cell therapies for tissue repair: current and future challenges. Biotechnol. Adv. 2013;31(5):744–751. doi:10.1016/j.biotechadv.2012.11.006
  • Jing H, He X, Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Translational Res. 2018;196:1–16. doi:10.1016/j.trsl.2018.01.005
  • Sufianov A, Kostin A, Begliarzade S, et al. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Non-Coding RNA Res. 2023;8(2):192–204. doi:10.1016/j.ncrna.2023.02.001
  • Chang W, Wang M, Zhang Y, et al. Roles of long noncoding RNAs and small extracellular vesicle-long noncoding RNAs in type 2 diabetes. Traffic. 2022;23(11):526–537. doi:10.1111/tra.12868
  • Li B, Luan S, Chen J, et al. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–826. doi:10.1016/j.omtn.2019.11.034
  • Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World j Stem Cells. 2014;6(5):526–539. doi:10.4252/wjsc.v6.i5.526
  • Fortier LA, Potter HG, Rickey EJ, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am Vol. 2010;92(10):1927–1937. doi:10.2106/jbjs.i.01284
  • Zhou Y, Yuan J, Zhou B, et al. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice. Immunology. 2011;133(1):133–140. doi:10.1111/j.1365-2567.2011.03421.x
  • Li M, Luan F, Zhao Y, et al. Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J. 2017;14(1):64–73. doi:10.1111/iwj.12551
  • Jo H, Brito S, Kwak BM. Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. Int J Med. 2021;22(5).
  • Bian D, Wu Y, Song G. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Jan. 2022;13(1):24. doi:10.1186/s13287-021-02697-9
  • Hu CH, Tseng YW, Chiou CY, et al. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Res Ther. 2019;10(1):275. doi:10.1186/s13287-019-1383-x
  • Sun B, Guo S, Xu F, et al. Concentrated Hypoxia-Preconditioned Adipose Mesenchymal Stem Cell-Conditioned Medium Improves Wounds Healing in Full-Thickness Skin Defect Model. Int Scholarly Res Notices. 2014;2014:652713. doi:10.1155/2014/652713
  • Li M, Zhao Y, Hao H, et al. Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int j Lower Extremity Wounds. 2015;14(1):73–86. doi:10.1177/1534734615569053
  • Laksmitawati DR, Noor SU, Sumiyati Y, Hartanto A, Widowati W, Pratami DK. The effect of mesenchymal stem cell-conditioned medium gel on burn wound healing in rat. Vet World. 2022;15(4):841–847. doi:10.14202/vetworld.2022.841-847
  • Karnam K, Sedmaki K, Sharma P, et al. HDAC6 inhibitor accelerates wound healing by inhibiting tubulin mediated IL-1β secretion in diabetic mice. Biochim Biophys Acta Mol Basis Dis. 2020;1866(11):165903. doi:10.1016/j.bbadis.2020.165903
  • Wang Y, Wan L, Zhang Z, Li J, Qu M, Zhou Q. Topical calcitriol application promotes diabetic corneal wound healing and reinnervation through inhibiting NLRP3 inflammasome activation. Exp. Eye Res. 2021;209:108668. doi:10.1016/j.exer.2021.108668
  • Li X, Wang T, Tao Y, Wang X, Li L, Liu J. MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome. Exp. Cell. Res. 2022;410(2):112967. doi:10.1016/j.yexcr.2021.112967
  • Tombulturk FK, Todurga-Seven ZG, Huseyinbas O, Ozyazgan S, Ulutin T, Kanigur-Sultuybek G. Topical application of metformin accelerates cutaneous wound healing in streptozotocin-induced diabetic rats. Jan. 2022;49(1):73–83. doi:10.1007/s11033-021-06843-7
  • Zhao Y, Wang Q, Yan S, et al. Bletilla striata Polysaccharide Promotes Diabetic Wound Healing Through Inhibition of the NLRP3 Inflammasome. Front Pharmacol. 2021;12:659215. doi:10.3389/fphar.2021.659215
  • Wang T, Zhao J, Zhang J, et al. Heparan sulfate inhibits inflammation and improves wound healing by downregulating the NLR family pyrin domain containing 3 (NLRP3) inflammasome in diabetic rats. J Diabetes. 2018;10(7):556–563. doi:10.1111/1753-0407.12630
  • Song J, Zeng J, Zheng S, et al. Sanguisorba officinalis L. promotes diabetic wound healing in rats through inflammation response mediated by macrophage. Phytotherapy Res. 2023;37(9):4265.
  • Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophysical Res Commun. 2016;478(3):1021.
  • Wang Y, Jing L, Lei X, et al. Umbilical cord mesenchymal stem cell-derived apoptotic extracellular vesicles ameliorate cutaneous wound healing in type 2 diabetic mice via macrophage pyroptosis inhibition. Analytical Cell Pathol. 2022;2022.
  • Dai J, Jiang C, Chen H, Chai Y. Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of mTOR/NF-κB Pathways in Macrophages. Front Pharmacol. 2019;10:1292. doi:10.3389/fphar.2019.01292
  • Sun X, Wang X, Zhao Z, Chen J, Li C, Zhao G. Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF-κB-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2. Drug Dev Res 2021;82(3):404–411. doi:10.1002/ddr.21763
  • Mi J, Xie C, Zeng L, et al. Bacillus subtilis WB800N alleviates diabetic wounds in mice by regulating gut microbiota homeostasis and TLR2. J Appl Microbiol. 2022;133(2):436–447. doi:10.1111/jam.15547
  • Bassett SA, Barnett MP. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 2014;6(10):4273–4301. doi:10.3390/nu6104273
  • Xu J, Zhao X, Jiang X, et al. Tubastatin A Improves Post-Resuscitation Myocardial Dysfunction by Inhibiting NLRP3-Mediated Pyroptosis Through Enhancing Transcription Factor EB Signaling. J Am Heart Assoc. 2022;11(7):e024205. doi:10.1161/jaha.121.024205
  • Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579–2587. doi:10.2337/db12-1450
  • Udumula MP, Mangali S, Kalra J, et al. High fructose and streptozotocin induced diabetic impairments are mitigated by Indirubin-3-hydrazone via downregulation of PKR pathway in Wistar rats. Sci Rep. 2021;11(1):12924. doi:10.1038/s41598-021-92345-2
  • Nakamura T, Furuhashi M, Li P, et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell. 2010;140(3):338–348. doi:10.1016/j.cell.2010.01.001
  • Nakamura T, Arduini A, Baccaro B, Furuhashi M, Hotamisligil GS. Small-molecule inhibitors of PKR improve glucose homeostasis in obese diabetic mice. Diabetes. 2014;63(2):526–534. doi:10.2337/db13-1019
  • Carvalho-Filho MA, Carvalho BM, Oliveira AG, et al. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice. Endocrinology. 2012;153(11):5261–5274. doi:10.1210/en.2012-1400
  • Mangali S, Bhat A, Jadhav K, et al. Upregulation of PKR pathway mediates glucolipotoxicity induced diabetic cardiomyopathy in vivo in Wistar rats and in vitro in cultured cardiomyocytes. Biochem Pharmacol 2020;177:113948. doi:10.1016/j.bcp.2020.113948
  • Yim HC, Wang D, Yu L, et al. The kinase activity of PKR represses inflammasome activity. Cell Res 2016;26(3):367–379. doi:10.1038/cr.2016.11
  • Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr.Opin Pharmacol 2010;10(4):482–496. doi:10.1016/j.coph.2010.04.001
  • Grammatiki M, Rapti E, Karras S, Ajjan RA, Kotsa K. Vitamin D and diabetes mellitus: causal or casual association? Jun. 2017;18(2):227–241. doi:10.1007/s11154-016-9403-y
  • Maddaloni E, Cavallari I, Napoli N, Conte C. Vitamin D and Diabetes Mellitus. Front Hormone Res. 2018;50:161–176. doi:10.1159/000486083
  • White JH. Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun. 2008;76(9):3837–3843. doi:10.1128/iai.00353-08
  • Reins RY, Hanlon SD, Magadi S, McDermott AM. Effects of Topically Applied Vitamin D during Corneal Wound Healing. PLoS One. 2016;11(4):e0152889. doi:10.1371/journal.pone.0152889
  • Lu X, Vick S, Chen Z, Chen J, Watsky MA. Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice. Diabetes. 2020;69(5):1042–1051. doi:10.2337/db19-1051
  • Lv D, Cao X, Zhong L, et al. Targeting phenylpyruvate restrains excessive NLRP3 inflammasome activation and pathological inflammation in diabetic wound healing. Cell Rep Med. 2023;4(8):101129. doi:10.1016/j.xcrm.2023.101129
  • Huang W, Jiao J, Liu J, et al. MFG-E8 accelerates wound healing in diabetes by regulating ”NLRP3 inflammasome-neutrophil extracellular traps” axis. Cell Death Discovery. 2020;6(1):84. doi:10.1038/s41420-020-00318-7
  • Bian F, Xiao Y, Zaheer M, et al. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn. Int J Mol Sci. 2017;18(3):562. doi:10.3390/ijms18030562
  • Xiao M, Li L, Li C, Liu L, Yu Y, Ma L. 3,4-Methylenedioxy-β-Nitrostyrene Ameliorates Experimental Burn Wound Progression by Inhibiting the NLRP3 Inflammasome Activation. Plastic Reconstructive Surg. 2016;137(3):566e–575e. doi:10.1097/01.prs.0000479972.06934.83
  • Chiu HW, Chen CH, Chang JN, Chen CH, Hsu YH. Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med. 2016;94(7):809–819. doi:10.1007/s00109-016-1389-0
  • Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol. 2021;12:681710. doi:10.3389/fimmu.2021.681710
  • Ochoa-Gonzalez F, Cervantes-Villagrana AR, Fernandez-Ruiz JC, et al. Metformin Induces Cell Cycle Arrest, Reduced Proliferation, Wound Healing Impairment In Vivo and Is Associated to Clinical Outcomes in Diabetic Foot Ulcer Patients. PLoS One. 2016;11(3):e0150900. doi:10.1371/journal.pone.0150900
  • Han X, Tao Y, Deng Y, Yu J, Sun Y, Jiang G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol Med Rep. 2017;16(6):8691–8698. doi:10.3892/mmr.2017.7707
  • Zhao P, Sui BD, Liu N, et al. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell. 2017;16(5):1083–1093. doi:10.1111/acel.12635
  • Yang F, Qin Y, Wang Y, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Bio Sci. 2019;15(5):1010–1019. doi:10.7150/ijbs.29680
  • Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020;19(10):1089–1104. doi:10.1080/15384101.2020.1743911
  • Zhang J, Huang L, Shi X, et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging. 2020;12(23):24270–24287. doi:10.18632/aging.202143
  • Zhou X, Wang Q, Nie L, et al. Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis. Arch Oral Biol. 2020;116:104763. doi:10.1016/j.archoralbio.2020.104763
  • Yuan Y, Fan X. Metformin Protects against Spinal Cord Injury and Cell Pyroptosis via AMPK/NLRP3. Inflammasome Pathway. 2022;2022:3634908. doi:10.1155/2022/3634908
  • Qing L, Fu J, Wu P, Zhou Z, Yu F, Tang J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am J Transl Res. 2019;11(2):655–668.
  • He X, Wang X, Fang J, et al. Bletilla striata: medicinal uses, phytochemistry and pharmacological activities. J Ethnopharmacol. 2017;195:20–38. doi:10.1016/j.jep.2016.11.026
  • Ji X, Yin M, Nie H. A Review of Isolation, Chemical Properties, and Bioactivities of Polysaccharides from Bletilla striata. BioMed Research International. 2020;2020:5391379. doi:10.1155/2020/5391379
  • Yue L, Wang W, Wang Y, et al. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int J Biol Macromol. 2016;89:376–388. doi:10.1016/j.ijbiomac.2016.05.002
  • Chen Z, Zhao Y, Zhang M, et al. Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohydr Polym. 2020;227:115362. doi:10.1016/j.carbpol.2019.115362
  • Zhang C, He Y, Chen Z, Shi J, Qu Y. Effect of Polysaccharides from Bletilla striata on the Healing of Dermal Wounds in Mice. EvidComplementary Alternative Med. 2019;2019:9212314. doi:10.1155/2019/9212314
  • Zhang Y, Lv T, Li M, et al. Anti-aging effect of polysaccharide from Bletilla striata on nematode Caenorhabditis elegans. Pharmacogn Mag. 2015;11(43):449–454. doi:10.4103/0973-1296.160447
  • Chen Z, Cheng L, He Y, Wei X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: a review. Int J Biol Macromol. 2018;120(Pt B):2076–2085. doi:10.1016/j.ijbiomac.2018.09.028
  • Ding L, Shan X, Zhao X, et al. Spongy bilayer dressing composed of chitosan-Ag nanoparticles and chitosan-Bletilla striata polysaccharide for wound healing applications. Carbohydr Polym. 2017;10(157):1538–1547. doi:10.1016/j.carbpol.2016.11.040
  • Luo Y, Diao H, Xia S, Dong L, Chen J, Zhang J. A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res Part A. 2010;94(1):193–204. doi:10.1002/jbm.a.32711
  • Wu XG, Xin M, Chen H, Yang LN, Jiang HR. Novel mucoadhesive polysaccharide isolated from Bletilla striata improves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis. J Pharm Pharmacol. 2010;62(9):1152–1157. doi:10.1111/j.2042-7158.2010.01137.x
  • Yu L, Nie X, Pan H, Ling S, Zhang D, Bian K. Diabetes mellitus ulcers treatment with Bletilla striata polysaccharide]. China J Chinese Materia Medica. 2011;36(11):1487–1491.
  • Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regeneratio. 2009;17(2):153–162. doi:10.1111/j.1524-475X.2009.00466.x
  • Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. J Pathol. 2003;200(4):423–428. doi:10.1002/path.1437
  • Chang Z, Meyer K, Rapraeger AC, Friedl A. Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB j. 2000;14(1):137–144. doi:10.1096/fasebj.14.1.137
  • Bame KJ. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology. 2001;11(6):91r–98r. doi:10.1093/glycob/11.6.91r
  • Menini S, Iacobini C, Vitale M. The Inflammasome in Chronic Complications of Diabetes and Related Metabolic Disorders. Cells. 2020;9(8). doi:10.3390/cells9081812
  • Gawron-Gzella A, Witkowska-Banaszczak E, Bylka W, Dudek-Makuch M, Odwrot A, Skrodzka N. Chemical Composition, Antioxidant and Antimicrobial Activities of Sanguisorba officinalis L. Extracts. Pharm Chem J. 2016;50(4):244–249. doi:10.1007/s11094-016-1431-0
  • Cheng D-L, Cao X-P. Pomolic acid derivatives from the root of Sanguisorba officinalis. Phytochemistry. 1992;31(4):1317–1320. doi:10.1016/0031-9422(92)80499-5
  • Chen JF, Tan L, Ju F, et al. Phenolic glycosides from Sanguisorba officinalis and their anti-inflammatory effects. Nat Product Res. 2022;36(8):2097–2104. doi:10.1080/14786419.2020.1849202
  • Yasueda A, Kayama H, Murohashi M, et al. Sanguisorba officinalis L. derived from herbal medicine prevents intestinal inflammation by inducing autophagy in macrophages. Sci Rep. 2020;10(1):9972. doi:10.1038/s41598-020-65306-4
  • Zhou P, Li J, Chen Q, et al. A Comprehensive Review of Genus Sanguisorba: traditional Uses, Chemical Constituents and Medical Applications. Front Pharmacol. 2021;12:750165. doi:10.3389/fphar.2021.750165
  • Zhang H, Chen J, Cen Y. Burn wound healing potential of a polysaccharide from Sanguisorba officinalis L. in mice. Int J Biol Macromol. 2018;112:862–867. doi:10.1016/j.ijbiomac.2018.01.214
  • Wang TT. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 1996;17(2):271.
  • Park E, Lee Sm Fau - Jung I-K, Jung Ik Fau - Lim Y, Lim Y, Fau - Kim J-H, Kim JH. Effects of genistein on early-stage cutaneous wound healing. Biochem Biophysical Res Commun. 2011;410(3):514.,
  • Hirota SA, Ng J, Fau - lueng A, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflammatory Bowel Dis. 2011;17(6):1359.
  • Zaki MH. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32(3):379.
  • Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World j Stem Cells. 2014;6(2):195–202. doi:10.4252/wjsc.v6.i2.195
  • Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells. 2015;33(7):2158.
  • Panepucci RA, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263.
  • Chen W, Liu J. Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects. Biomaterials. 2013;34(38):9917.
  • Zhao J, Yu G, Cai M, et al. Bibliometric analysis of global scientific activity on umbilical cord mesenchymal stem cells: a swiftly expanding and shifting focus. Stem Cell Res Therapy. 2018;9(1):1.
  • Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242.
  • Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus. Redox Bbiol. 2014;2:170.
  • Bandeira Sde M, Guedes Gda S, da Fonseca LJS, et al. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxidative Med Cell Longevity. 2012;2012. doi:10.1155/2012/819310
  • Bacanlı M, Anlar HG, Aydın S, et al. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2017;110:434.
  • Jamal Gilani S, Bin-Jumah M N, Al-Abbasi FA, et al. Fustin ameliorates hyperglycemia in streptozotocin induced type-2 diabetes via modulating glutathione/Superoxide dismutase/Catalase expressions, suppress lipid peroxidation and regulates histopathological changes. Saudi J Biol Sci. 2021;28(12):6963.
  • Iskender H, Dokumacioglu E, Sen TM, Ince I, Kanbay Y, Saral S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed icine Pharmacother. 2017;90:500.
  • Abais JM, Xia M, Fau - Zhang Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants Redox Signaling. 2015;22(13):1111.
  • Jia X, Cao B, An Y, Zhang X, Wang C. Rapamycin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting IL-1β and IL-18 production. Int Immunopharmacol. 2019;67:211.
  • Xiao M, Li L, Fau - Hu Q, et al. Rapamycin reduces burn wound progression by enhancing autophagy in deep second-degree burn in rats. Regeneration. 2013;21(6):852.
  • Mills RE, Taylor KR, Podshivalova K, McKay DB, Jameson JM. Defects in Skin γδ T Cell Function Contribute to Delayed Wound Repair in Rapamycin-Treated Mice1. J Immunol. 2008;181(6):3974–3983. doi:10.4049/jimmunol.181.6.3974
  • Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. ?mol Biol Cell. 2009;20(7):1992–2003. doi:10.1091/mbc.e08-12-1249
  • Dai J, Zhang X, Li L, Chen H, Chai Y. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages. Cell Phys Biochem. 2017;43(1):247–256. doi:10.1159/000480367
  • Liu YC, Gao XX, Chen L, You XQ. Rapamycin suppresses Aβ(25-35)- or LPS-induced neuronal inflammation via modulation of NF-κB signaling. Neuroscience. 2017;355:188–199. doi:10.1016/j.neuroscience.2017.05.005
  • Wen J, Xu B, Sun Y, et al. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacol Res. 2019;146:104308. doi:10.1016/j.phrs.2019.104308
  • Yin N, Gao Q, Tao W, et al. Paeoniflorin relieves LPS-induced inflammatory pain in mice by inhibiting NLRP3 inflammasome activation via transient receptor potential vanilloid 1. Journal of Leukocyte Biology. 2020;108(1):229–241. doi:10.1002/jlb.3ma0220-355r
  • Sun X, Wang X, Zhao Z, Chen J, Li C, Zhao G. Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway. Acta Histochem. 2020;122(8):151649. doi:10.1016/j.acthis.2020.151649
  • Citro A, Valle A. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes. 2015;64(4):1329–1340. doi:10.2337/db14-0443
  • Zou XY, Zhang M, Tu WJ, et al. Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens. Animal. 2022;16(3):100474. doi:10.1016/j.animal.2022.100474
  • Liu Y, Ding S, Dietrich R, Märtlbauer E, Zhu K. A Biosurfactant-Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie. 2017;56(6):1486–1490. doi:10.1002/anie.201609277
  • Ansari A, Zohra RR, Tarar OM, Qader SAU, Aman A. Screening, purification and characterization of thermostable, protease resistant Bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiol 2018;18(1):192. doi:10.1186/s12866-018-1337-y
  • Tan F, Limbu SM, Qian Y, Qiao F, Du ZY, Zhang M. The Responses of Germ-Free Zebrafish (Danio rerio) to Varying Bacterial Concentrations, Colonization Time Points, and Exposure Duration. Front Microbiol. 2019;10:2156. doi:10.3389/fmicb.2019.02156
  • Huon JF, Montassier E, Leroy AG, Grégoire M. Phages versus Antibiotics To Treat Infected Diabetic Wounds in a Mouse Model: a Microbiological and Microbiotic Evaluation. mSystems. 2020;5(6). doi:10.1128/mSystems.00542-20
  • Bortoluzzi C, Serpa Vieira B, de Paula Dorigam JC, et al. Bacillus subtilis DSM 32315 Supplementation Attenuates the Effects of Clostridium perfringens Challenge on the Growth Performance and Intestinal Microbiota of Broiler Chickens. Microorganisms. 2019;7(3):71. doi:10.3390/microorganisms7030071
  • Li Y, Xu Q, Huang Z, et al. Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. J Appl Microbiol. 2016;120(1):195–204. doi:10.1111/jam.12972
  • Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK. Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Jun. 2021;17(6):681–690. doi:10.1080/1744666x.2021.1912598
  • Koch KN, Hartung ML, Urban S, et al. Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. J Clin Invest. 2015;125(8):3297–3302. doi:10.1172/jci79337
  • He X, Mekasha S, Mavrogiorgos N, Fitzgerald KA, Lien E, Ingalls RR. Inflammation and fibrosis during Chlamydia pneumoniae infection is regulated by IL-1 and the NLRP3/ASC inflammasome. J Immunol. 2010;184(10):5743–5754. doi:10.4049/jimmunol.0903937
  • Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187(1):61–70. doi:10.1083/jcb.200903124
  • He Y, Chang Y, Peng Y, et al. Glibenclamide Directly Prevents Neuroinflammation by Targeting SUR1-TRPM4-Mediated NLRP3 Inflammasome Activation In Microglia. Mol Neurobiol. 2022;59(10):6590–6607. doi:10.1007/s12035-022-02998-x
  • Arita Y, Yoshinaga Y. Glyburide inhibits the bone resorption induced by traumatic occlusion in rats. Jun. 2020;55(3):464–471. doi:10.1111/jre.12731
  • Lin YW, Liu PS, Pook KA, Wei LN. Glyburide and retinoic acid synergize to promote wound healing by anti-inflammation and RIP140 degradation. Sci Rep. 2018;8(1):834. doi:10.1038/s41598-017-18785-x
  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–247. doi:10.1038/ni.1703
  • Chiazza F, Couturier-Maillard A, Benetti E, et al. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice. Mol Med. 2016;21(1):1025–1037. doi:10.2119/molmed.2015.00104
  • Xu C, Zhang Y, Sutrisno L, Yang L, Chen R, Sung KLP. Bay11-7082 facilitates wound healing by antagonizing mechanical injury- and TNF-α-induced expression of MMPs in posterior cruciate ligament. Connective Tissue Res. 2019;60(4):311–322. doi:10.1080/03008207.2018.1512978
  • Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity. 2013;39(3):432–441. doi:10.1016/j.immuni.2013.08.037
  • Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–414. doi:10.1016/j.immuni.2012.01.009
  • Wu D, Chen Y, Sun Y, et al. Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review. Inflammation. 2020;43(1):17–23. doi:10.1007/s10753-019-01098-8
  • Zhang C, Zhu X, Li L, et al. A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes, metabolic syndrome and obesity: targets and therapy. Diabetes Metabolic Syndrome Obesity. 2019;12:1297–1309. doi:10.2147/dmso.s199802
  • Zhai Y, Meng X, Ye T, Xie W, Sun G, Sun X. Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice. Molecules. 2018;23(3):522. doi:10.3390/molecules23030522
  • Zeng W, Wu D, Sun Y, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep. 2021;11(1):19305. doi:10.1038/s41598-021-98437-3
  • Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Mar. 2015;21(3):248–255. doi:10.1038/nm.3806