84
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis

, , , , , , , ORCID Icon, & show all
Pages 2173-2193 | Received 08 Nov 2023, Accepted 20 Mar 2024, Published online: 09 Apr 2024

References

  • Banks PA, Bollen TL, Dervenis C., et al. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–111. doi:10.1136/gutjnl-2012-302779
  • Li J, Chen J, Tang W. The consensus of integrative diagnosis and treatment of acute pancreatitis-2017. J Evid Based Med. 2019;12(1):76–88. doi:10.1111/jebm.12342
  • Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(8):479–496. doi:10.1038/s41575-019-0158-2
  • Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):175–184. doi:10.1038/s41575-018-0087-5
  • Lin J, Han C, Dai N, Bi S, Du D, Xia Q. Effectiveness of Chengqi-series decoctions in treating severe acute pancreatitis: a Systematic review and meta-analysis. Phytomedicine. 2023;113:154727. doi:10.1016/j.phymed.2023.154727
  • Wang Z, Liu J, Wang Y, et al. Identification of Key Biomarkers Associated with Immunogenic Cell Death and Their Regulatory Mechanisms in Severe Acute Pancreatitis Based on WGCNA and Machine Learning. Int J Mol Sci. 2023;24(3):3033. doi:10.3390/ijms24033033
  • Mederos MA, Reber HA, Girgis MD. Acute Pancreatitis: a Review. JAMA. 2021;325(4):382–390. doi:10.1001/jama.2020.20317
  • Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 2015;386(9988):85–96. doi:10.1016/S0140-6736(14)60649-8
  • Iannuzzi JP, King JA, Leong JH, et al. Global Incidence of Acute Pancreatitis Is Increasing Over Time: a Systematic Review and Meta-Analysis. Gastroenterology. 2022;162(1):122–134. doi:10.1053/j.gastro.2021.09.043
  • Hu Q, Yao J, Wu X, et al. Emodin attenuates severe acute pancreatitis-associated acute lung injury by suppressing pancreatic exosome-mediated alveolar macrophage activation. Acta Pharm Sin B. 2022;12(10):3986–4003. doi:10.1016/j.apsb.2021.10.008
  • Owusu L, Xu C, Chen H, et al. Gamma-enolase predicts lung damage in severe acute pancreatitis-induced acute lung injury. J Mol Histol. 2018;49(4):347–356. doi:10.1007/s10735-018-9774-3
  • Zhu X, Duan F, Zhang Y, et al. Acadesine alleviates acute pancreatitis-related lung injury by mediating the barrier protective function of pulmonary microvascular endothelial cells. Int Immunopharmacol. 2022;111:109165. doi:10.1016/j.intimp.2022.109165
  • Bampidis V, Azimonti G, Bastos M, et al. Safety and efficacy of a feed additive consisting of l-methionine produced by the combined activities of Corynebacterium glutamicum KCCM 80245 and Escherichia coli KCCM 80246 for all animal species (CJ Europe GmbH). EFSA J. 2022;20(4):e07247. doi:10.2903/j.efsa.2022.7247
  • Kong L, Deng J, Zhou X, et al. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury. Cell Death Dis. 2021;12(10):928. doi:10.1038/s41419-021-04227-0
  • Larwood DJ. Nikkomycin Z-Ready to Meet the Promise? J Fungi (Basel). 2020;6(4):261. doi:10.3390/jof6040261
  • Zhou Y, Xia H, Zhao L, et al. SB203580 attenuates acute lung injury and inflammation in rats with acute pancreatitis in pregnancy. Inflammopharmacology. 2019;27(1):99–107. doi:10.1007/s10787-018-0522-9
  • Dombernowsky T, Kristensen MØ, Rysgaard S, Gluud LL, Novovic S. Risk factors for and impact of respiratory failure on mortality in the early phase of acute pancreatitis. Pancreatology. 2016;16(5):756–760. doi:10.1016/j.pan.2016.06.664
  • Elder ASF, Saccone GTP, Dixon D-L. Lung injury in acute pancreatitis: mechanisms underlying augmented secondary injury. Pancreatology. 2012;12(1):49–56. doi:10.1016/j.pan.2011.12.012
  • Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc. 2015;12 Suppl 1:S3-S8. doi:10.1513/AnnalsATS.201407-340MG
  • Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–1693. doi:10.1056/NEJMoa050333
  • Mansfield PB. An apparatus for elective fibrillatory cardiac arrest in experimental and clinical cardiopulmonary bypass operations. J Thorac Cardiovasc Surg. 1962;43:402–405.
  • Pastor CM, Matthay MA, Frossard J-L. Pancreatitis-associated acute lung injury: new insights. Chest. 2003;124(6):2341–2351. doi:10.1378/chest.124.6.2341
  • Jia M, Xu X, Zhou S, et al. Prediction of acute lung injury in severe acute pancreatitis by routine clinical data. Eur J Gastroenterol Hepatol. 2023;35(1):36–44. doi:10.1097/MEG.0000000000002458
  • De Campos T, Deree J, Coimbra R. From acute pancreatitis to end-organ injury: mechanisms of acute lung injury. Surg Infect (Larchmt). 2007;8(1):107–120. doi:10.1089/sur.2006.011
  • Akbarshahi H, Rosendahl AH, Westergren-Thorsson G, Andersson R. Acute lung injury in acute pancreatitis--awaiting the big leap. Respir Med. 2012;106(9):1199–1210. doi:10.1016/j.rmed.2012.06.003
  • Lou D, Shi K, H-P L, et al. Quantitative metabolic analysis of plasma extracellular vesicles for the diagnosis of severe acute pancreatitis. J Nanobiotechnology. 2022;20(1):52. doi:10.1186/s12951-022-01239-6
  • Montravers P, Chollet-Martin S, Marmuse JP, Gougerot-Pocidalo MA, Desmonts JM. Lymphatic release of cytokines during acute lung injury complicating severe pancreatitis. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1527–1533. doi:10.1164/ajrccm.152.5.7582288
  • Teodoro T, Odisho T, Sidorova E, Volchuk A. Pancreatic β-cells depend on basal expression of active ATF6α-p50 for cell survival even under nonstress conditions. Am J Physiol Cell Physiol. 2012;302(7):C992–1003. doi:10.1152/ajpcell.00160.2011
  • Gunjaca I, Zunic J, Gunjaca M, Kovac Z. Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity. Inflammation. 2012;35(2):758–763. doi:10.1007/s10753-011-9371-z
  • Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3–20. doi:10.1016/j.jaci.2009.05.038
  • Zhang D, Li L, Li J, et al. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats. Biomed Pharmacother. 2022;153:113461. doi:10.1016/j.biopha.2022.113461
  • Zhang -X-X, Wang H-Y, Yang X-F, et al. Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells. World J Gastroenterol. 2021;27(18):2141–2159. doi:10.3748/wjg.v27.i18.2141
  • Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667–685. doi:10.1038/nri3738
  • Perez-Lopez A, Behnsen J, Nuccio S-P, Raffatellu M. Mucosal immunity to pathogenic intestinal bacteria. Nat Rev Immunol. 2016;16(3):135–148. doi:10.1038/nri.2015.17
  • Li Y, Liu N, Ge Y, Yang Y, Ren F, Wu Z. Tryptophan and the innate intestinal immunity: crosstalk between metabolites, host innate immune cells, and microbiota. Eur J Immunol. 2022;52(6):856–868. doi:10.1002/eji.202149401
  • Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: a Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol. 2021;12:658354. doi:10.3389/fimmu.2021.658354
  • Tan Y-Q, Wang Y-N, Feng H-Y, et al. Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling. Free Radic Biol Med. 2022;184:30–41. doi:10.1016/j.freeradbiomed.2022.03.025
  • Zhuang Q, Huang L, Zeng Y, et al. Dynamic Monitoring of Immunoinflammatory Response Identifies Immunoswitching Characteristics of Severe Acute Pancreatitis in Rats. Front Immunol. 2022;13:876168. doi:10.3389/fimmu.2022.876168
  • Stojanovic B, Jovanovic IP, Stojanovic MD, et al. The Emerging Roles of the Adaptive Immune Response in Acute Pancreatitis. Cells. 2023;12(11):1495. doi:10.3390/cells12111495
  • Wang Z, Li F, Liu J, et al. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol. 2022;13:913178. doi:10.3389/fimmu.2022.913178
  • Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. doi:10.1038/nri2653
  • Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–153. doi:10.1038/nri3608
  • Oda M, Hatano Y, Sato T. Intestinal epithelial organoids: regeneration and maintenance of the intestinal epithelium. Curr Opin Genet Dev. 2022;76:101977. doi:10.1016/j.gde.2022.101977
  • Shaker A, Rubin DC. Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res. 2010;156(3):180–187. doi:10.1016/j.trsl.2010.06.003
  • Cohen-Kedar S, Shaham Barda E, Rabinowitz KM, et al. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front Immunol. 2023;14:1142492. doi:10.3389/fimmu.2023.1142492
  • Overcast GR, Meibers HE, Eshleman EM, et al. IEC-intrinsic IL-1R signaling holds dual roles in regulating intestinal homeostasis and inflammation. J Exp Med. 2023;220(6):e20212523. doi:10.1084/jem.20212523
  • Moon S, Park Y, Hyeon S, et al. Niche-specific MHC II and PD-L1 regulate CD4+CD8αα+ intraepithelial lymphocyte differentiation. J Exp Med. 2021;218(4):e20201665. doi:10.1084/jem.20201665
  • Seo G-Y, Takahashi D, Wang Q, et al. Epithelial HVEM maintains intraepithelial T cell survival and contributes to host protection. Sci Immunol. 2022;7(73):eabm6931. doi:10.1126/sciimmunol.abm6931
  • Duan J, Matute JD, Unger LW, et al. Endoplasmic reticulum stress in the intestinal epithelium initiates purine metabolite synthesis and promotes Th17 cell differentiation in the gut. Immunity. 2023;56(5):1115–1131.e9. doi:10.1016/j.immuni.2023.02.018
  • Glaubitz J, Wilden A, Frost F, et al. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis. Gut. 2023;72(7):1355–1369. doi:10.1136/gutjnl-2022-327448
  • Alcaino C. Mechanosensitive release of 5-HT from specialized intestinal epithelial cells. Nat Rev Gastroenterol Hepatol. 2023;20(1):4. doi:10.1038/s41575-022-00712-9
  • Tan SH, Phuah P, Tan LT, et al. A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis. Cell Rep. 2021;34(4):108633. doi:10.1016/j.celrep.2020.108633
  • Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–1007. doi:10.1038/nature06196
  • Ishikawa K, Sugimoto S, Oda M, et al. Identification of Quiescent LGR5+ Stem Cells in the Human Colon. Gastroenterology. 2022;163(5):1391–1406.e24. doi:10.1053/j.gastro.2022.07.081
  • Sanman LE, Chen IW, Bieber JM, et al. Transit-Amplifying Cells Coordinate Changes in Intestinal Epithelial Cell-Type Composition. Dev Cell. 2021;56(3):356–365.e9. doi:10.1016/j.devcel.2020.12.020
  • Cancedda R, Mastrogiacomo M. Transit Amplifying Cells (TACs): a still not fully understood cell population. Front Bioeng Biotechnol. 2023;11:1189225. doi:10.3389/fbioe.2023.1189225
  • Jing J, Feng J, Li J, et al. Reciprocal interaction between mesenchymal stem cells and transit amplifying cells regulates tissue homeostasis. Elife. 2021;10:e59459. doi:10.7554/eLife.59459
  • Roostaee A, Benoit YD, Boudjadi S, Beaulieu J-F. Epigenetics in Intestinal Epithelial Cell Renewal. J Cell Physiol. 2016;231(11):2361–2367. doi:10.1002/jcp.25401
  • Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: stem Cell Niches and Regulatory Signals. Int J Mol Sci. 2020;22(1):357. doi:10.3390/ijms22010357
  • Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16(1):19–34. doi:10.1038/s41575-018-0081-y
  • Zhu P, Lu T, Wu J, et al. Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res. 2022;32(6):555–569. doi:10.1038/s41422-022-00645-7
  • Kim S, Shin Y-C, Kim T-Y, et al. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes. 2021;13(1):1–20. doi:10.1080/19490976.2021.1892441
  • Goto N, Goto S, Imada S, Hosseini S, Deshpande V, Yilmaz ÖH. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell. 2022;29(8):1246–1261.e6. doi:10.1016/j.stem.2022.06.013
  • Schmitt M, Schewe M, Sacchetti A, et al. Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. Cell Rep. 2018;24(9):2312–2328.e7. doi:10.1016/j.celrep.2018.07.085
  • Canale V, Spalinger MR, Alvarez R, et al. PTPN2 Is a Critical Regulator of Ileal Paneth Cell Viability and Function in Mice. Cell Mol Gastroenterol Hepatol. 2023;16(1):39–62. doi:10.1016/j.jcmgh.2023.03.009
  • Hou Q, Huang J, Ayansola H, Masatoshi H, Zhang B. Intestinal Stem Cells and Immune Cell Relationships: potential Therapeutic Targets for Inflammatory Bowel Diseases. Front Immunol. 2020;11:623691. doi:10.3389/fimmu.2020.623691
  • Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018;11(6):1551–1557. doi:10.1038/s41385-018-0039-y
  • Liu Y, Yu X, Zhao J, Zhang H, Zhai Q, Chen W. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int J Biol Macromol. 2020;164:884–891. doi:10.1016/j.ijbiomac.2020.07.191
  • Johansson ME, Hansson GC. Goblet cells need some stress. J Clin Invest. 2022;132(17):e162030. doi:10.1172/JCI162030
  • Newberry RD, Hogan SP. Intestinal epithelial cells in tolerance and allergy to dietary antigens. J Allergy Clin Immunol. 2021;147(1):45–48. doi:10.1016/j.jaci.2020.10.030
  • Kulkarni DH, Gustafsson JK, Knoop KA, et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 2020;13(2):271–282. doi:10.1038/s41385-019-0240-7
  • Gustafsson JK, Davis JE, Rappai T, et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. Elife. 2021;10:e67292. doi:10.7554/eLife.67292
  • Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol. 2022;19(12):785–803. doi:10.1038/s41575-022-00675-x
  • Nyström EEL, Martinez-Abad B, Arike L, et al. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science. 2021;372(6539):eabb1590. doi:10.1126/science.abb1590
  • Naama M, Telpaz S, Awad A, et al. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe. 2023;31(3):433–446.e4. doi:10.1016/j.chom.2023.01.006
  • Hindson J. Mucus secretion from colonic goblet cells is regulated by autophagy and ER stress. Nat Rev Gastroenterol Hepatol. 2023;20(4):202. doi:10.1038/s41575-023-00761-8
  • Allaire JM, Morampudi V, Crowley SM, et al. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. Am J Physiol Gastrointest Liver Physiol. 2018;314(3):G360–G377. doi:10.1152/ajpgi.00181.2017
  • Huang Z, Wu H, Fan J, et al. Colonic mucin-2 attenuates acute necrotizing pancreatitis in rats by modulating intestinal homeostasis. FASEB J. 2023;37(7):e22994. doi:10.1096/fj.202201998R
  • Yao Y, Kim G, Shafer S, et al. Mucus sialylation determines intestinal host-commensal homeostasis. Cell. 2022;185(7):1172–1188.e28. doi:10.1016/j.cell.2022.02.013
  • Cray P, Sheahan BJ, Dekaney CM. Secretory Sorcery: Paneth Cell Control of Intestinal Repair and Homeostasis. Cell Mol Gastroenterol Hepatol. 2021;12(4):1239–1250. doi:10.1016/j.jcmgh.2021.06.006
  • Fu Y, Mei Q, Yin N, et al. Paneth Cells Protect against Acute Pancreatitis via Modulating Gut Microbiota Dysbiosis. mSystems. 2022;7(3):e0150721. doi:10.1128/msystems.01507-21
  • Yu S, Balasubramanian I, Laubitz D, et al. Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity. 2020;53(2):398–416.e8. doi:10.1016/j.immuni.2020.07.010
  • Lin X, Gaudino SJ, Jang KK, et al. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity. 2022;55(2):237–253.e8. doi:10.1016/j.immuni.2021.12.016
  • He G-W, Lin L, DeMartino J, et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell. 2022;29(9):1333–1345.e6. doi:10.1016/j.stem.2022.08.002
  • Luo C, Huang Q, Yuan X, et al. Abdominal paracentesis drainage attenuates severe acute pancreatitis by enhancing cell apoptosis via PI3K/AKT signaling pathway. Apoptosis. 2020;25(3–4):290–303. doi:10.1007/s10495-020-01597-2
  • Sun Z, Li L, Qu J, Li H, Chen H. Proteomic analysis of therapeutic effects of Qingyi pellet on rodent severe acute pancreatitis-associated lung injury. Biomed Pharmacother. 2019;118:109300. doi:10.1016/j.biopha.2019.109300
  • Azkanaz M, Corominas-Murtra B, Ellenbroek SIJ, et al. Retrograde movements determine effective stem cell numbers in the intestine. Nature. 2022;607(7919):548–554. doi:10.1038/s41586-022-04962-0
  • Theiss AL. Ptpn2: a Critical Regulator of Paneth Cell Homeostasis. Cell Mol Gastroenterol Hepatol. 2023;16(1):163–164. doi:10.1016/j.jcmgh.2023.03.010
  • Chen J, Huang C, Wang J, et al. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One. 2017;12(4):e0176583. doi:10.1371/journal.pone.0176583
  • Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–677. doi:10.1038/mi.2013.30
  • Dillon A, Lo DD. M Cells: intelligent Engineering of Mucosal Immune Surveillance. Front Immunol. 2019;10:1499. doi:10.3389/fimmu.2019.01499
  • Torow N, Li R, Hitch TCA, et al. M cell maturation and cDC activation determine the onset of adaptive immune priming in the neonatal Peyer’s patch. Immunity. 2023;56(6):1220–1238.e7. doi:10.1016/j.immuni.2023.04.002
  • Lai NY, Musser MA, Pinho-Ribeiro FA, et al. Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell. 2020;180(1):33–49.e22. doi:10.1016/j.cell.2019.11.014
  • Schlesinger Y, Yosefov-Levi O, Kolodkin-Gal D, et al. Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat Commun. 2020;11(1):4516. doi:10.1038/s41467-020-18207-z
  • Luna Velez MV, Neikes HK, Snabel RR, et al. ONECUT2 regulates RANKL-dependent enterocyte and microfold cell differentiation in the small intestine; a multi-omics study. Nucleic Acids Res. 2023;51(3):1277–1296. doi:10.1093/nar/gkac1236
  • Shen A, Kim H-J, G-S O, et al. Pharmacological stimulation of NQO1 decreases NADPH levels and ameliorates acute pancreatitis in mice. Cell Death Dis. 2018;10(1):5. doi:10.1038/s41419-018-1252-z
  • Hsu N-Y, Nayar S, Gettler K, et al. NOX1 is essential for TNFα-induced intestinal epithelial ROS secretion and inhibits M cell signatures. Gut. 2023;72(4):654–662. doi:10.1136/gutjnl-2021-326305
  • Lin S, Mukherjee S, Li J, Hou W, Pan C, Liu J. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci Adv. 2021;7(20):eabf0677. doi:10.1126/sciadv.abf0677
  • Guo X, Yin C, Yang F, et al. The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells. Cell Rep. 2019;29(12):4172–4185.e5. doi:10.1016/j.celrep.2019.11.048
  • Beumer J, Puschhof J, Bauzá-Martinez J, et al. High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells. Cell. 2020;181(6):1291–1306.e19. doi:10.1016/j.cell.2020.04.036
  • Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol. 2019;15(4):226–237. doi:10.1038/s41574-019-0168-8
  • Zhao M, Ren K, Xiong X, et al. Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells. Cell Rep. 2020;32(6):108013. doi:10.1016/j.celrep.2020.108013
  • Wang Z, Liu J, Li F, et al. The gut-lung axis in severe acute Pancreatitis-associated lung injury: the protection by the gut microbiota through short-chain fatty acids. Pharmacol Res. 2022;182:106321. doi:10.1016/j.phrs.2022.106321
  • Ye L, Bae M, Cassilly CD, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29(2):179–196.e9. doi:10.1016/j.chom.2020.11.011
  • Jakkampudi A, Sarkar P, Unnisa M, et al. Kynurenine pathway alteration in acute pancreatitis and its role as a biomarker of infected necrosis. Pancreatology. 2023;23(6):589–600. doi:10.1016/j.pan.2023.07.003
  • Bayrer JR, Castro J, Venkataraman A, et al. Gut enterochromaffin cells drive visceral pain and anxiety. Nature. 2023;616(7955):137–142. doi:10.1038/s41586-023-05829-8
  • Chen S, He R, He B, Xu L, Zhang S. Potential Roles of Exosomal lncRNAs in the Intestinal Mucosal Immune Barrier. J Immunol Res. 2021;2021:7183136. doi:10.1155/2021/7183136
  • Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol. 2023;41(6):824–831. doi:10.1038/s41587-022-01558-x
  • Park JI, Cho SW, Kang JH, Park T-E. Intestinal Peyer’s Patches: structure, Function, and In Vitro Modeling. Tissue Eng Regen Med. 2023;20(3):341–353. doi:10.1007/s13770-023-00543-y
  • Gribonika I, Strömberg A, Lebrero-Fernandez C, et al. Peyer’s patch TH17 cells are dispensable for gut IgA responses to oral immunization. Sci Immunol. 2022;7(73):eabc5500. doi:10.1126/sciimmunol.abc5500
  • Hirota K, Turner J-E, Villa M, et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14(4):372–379. doi:10.1038/ni.2552
  • Obata T, Goto Y, Kunisawa J, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010;107(16):7419–7424. doi:10.1073/pnas.1001061107
  • Chen H, Zhang Y, Ye AY, et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nature. 2020;582(7812):421–425. doi:10.1038/s41586-020-2262-4
  • Sonnenberg GF, Monticelli LA, Alenghat T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–1325. doi:10.1126/science.1222551
  • Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 2021;184(3):810–826.e23. doi:10.1016/j.cell.2020.12.016
  • Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y, Kobata T. Peyer’s patch innate lymphoid cells regulate commensal bacteria expansion. Immunol Lett. 2015;165(1):1–9. doi:10.1016/j.imlet.2015.03.002
  • Chen J, Huang J, Shi J, et al. Nestin+ Peyer’s patch resident MSCs enhance healing of inflammatory bowel disease through IL-22-mediated intestinal epithelial repair. Cell Prolif. 2023;56(2):e13363. doi:10.1111/cpr.13363
  • Fair-Mäkelä R, Ugur M, Iftakhar-E-Khuda I, et al. Robo4 contributes to the turnover of Peyer’s patch B cells. Mucosal Immunol. 2020;13(2):245–256. doi:10.1038/s41385-019-0230-9
  • Troullinaki M, Chen L-S, Witt A, et al. Robo4-mediated pancreatic endothelial integrity decreases inflammation and islet destruction in autoimmune diabetes. FASEB J. 2020;34(2):3336–3346. doi:10.1096/fj.201900125RR
  • Olivares-Villagómez D, Van Kaer L. Intestinal Intraepithelial Lymphocytes: sentinels of the Mucosal Barrier. Trends Immunol. 2018;39(4):264–275. doi:10.1016/j.it.2017.11.003
  • Hoytema van Konijnenburg DP, Mucida D. Intraepithelial lymphocytes. Curr Biol. 2017;27(15):R737–R739. doi:10.1016/j.cub.2017.05.073
  • Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2011;11(7):445–456. doi:10.1038/nri3007
  • Han J, Liu N, Jin W, et al. TGF-β controls development of TCRγδ+CD8αα+ intestinal intraepithelial lymphocytes. Cell Discov. 2023;9(1):52. doi:10.1038/s41421-023-00542-2
  • Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol. 2021;109(2):339–347. doi:10.1002/JLB.3RU0220-111
  • Song X, Zhang H, Zhang Y, et al. Gut microbial fatty acid isomerization modulates intraepithelial T cells. Nature. 2023;619(7971):837–843. doi:10.1038/s41586-023-06265-4
  • Wong CK, Yusta B, Koehler JA, et al. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab. 2022;34(10):1514–1531.e7. doi:10.1016/j.cmet.2022.08.003
  • Panda SK, Peng V, Sudan R, et al. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. Immunity. 2023;56(4):797–812.e4. doi:10.1016/j.immuni.2023.01.023
  • Xue J, Nguyen DTC, Habtezion A. Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology. 2012;143(6):1670–1680. doi:10.1053/j.gastro.2012.08.051
  • Isho B, Florescu A, Wang AA, Gommerman JL. Fantastic IgA plasma cells and where to find them. Immunol Rev. 2021;303(1):119–137. doi:10.1111/imr.12980
  • Sandler RS, Hansen JJ, Peery AF, Woosley JT, Galanko JA, Keku TO. Intraepithelial and Lamina Propria Lymphocytes Do Not Correlate With Symptoms or Exposures in Microscopic Colitis. Clin Transl Gastroenterol. 2022;13(3):e00467. doi:10.14309/ctg.0000000000000467
  • Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev. 2021;303(1):83–102. doi:10.1111/imr.13014
  • Lin YH, Duong HG, Limary AE, et al. Small intestine and colon tissue-resident memory CD8+ T cells exhibit molecular heterogeneity and differential dependence on Eomes. Immunity. 2023;56(1):207–223.e8. doi:10.1016/j.immuni.2022.12.007
  • Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol. 2022;13:849954. doi:10.3389/fimmu.2022.849954
  • Vivier E, Artis D, Colonna M, et al. Innate Lymphoid Cells: 10 Years On. Cell. 2018;174(5):1054–1066. doi:10.1016/j.cell.2018.07.017
  • Bal SM, Golebski K, Spits H. Plasticity of innate lymphoid cell subsets. Nat Rev Immunol. 2020;20(9):552–565. doi:10.1038/s41577-020-0282-9
  • Zhao M, Shao F, Yu D, et al. Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis. Nat Commun. 2022;13(1):7600. doi:10.1038/s41467-022-35347-6
  • Panda SK, Colonna M. Innate Lymphoid Cells in Mucosal Immunity. Front Immunol. 2019;10:861. doi:10.3389/fimmu.2019.00861
  • Jarade A, Garcia Z, Marie S, et al. Inflammation triggers ILC3 patrolling of the intestinal barrier. Nat Immunol. 2022;23(9):1317–1323. doi:10.1038/s41590-022-01284-1
  • Shen Y, Cui N-Q. Clinical observation of immunity in patients with secondary infection from severe acute pancreatitis. Inflamm Res. 2012;61(7):743–748. doi:10.1007/s00011-012-0467-1
  • Yin G, Zhao C, Pei W. Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol. 2022;110:108937. doi:10.1016/j.intimp.2022.108937
  • Shi S, Ye L, Jin K, Xiao Z, Yu X, Wu W. Innate Lymphoid Cells: emerging Players in Pancreatic Disease. Int J Mol Sci. 2022;23(7):3748. doi:10.3390/ijms23073748
  • Yang Y, Palm NW. Immunoglobulin A and the microbiome. Curr Opin Microbiol. 2020;56:89–96. doi:10.1016/j.mib.2020.08.003
  • Corthésy B. Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun Rev. 2013;12(6):661–665. doi:10.1016/j.autrev.2012.10.012
  • Zhang H, Qi C, Zhao Y, et al. Depletion of gut secretory immunoglobulin A coated Lactobacillus reuteri is associated with gestational diabetes mellitus-related intestinal mucosal barrier damage. Food Funct. 2021;12(21):10783–10794. doi:10.1039/d1fo02517a
  • Maccio-Maretto L, Piqueras V, Barrios BE, Romagnoli PA, Denning TL, Correa SG. Luminal bacteria coated with IgA and IgG during intestinal inflammation as a new and abundant stimulus for colonic macrophages. Immunology. 2022;167(1):64–76. doi:10.1111/imm.13518
  • Michaud E, Waeckel L, Gayet R, et al. Alteration of microbiota antibody-mediated immune selection contributes to dysbiosis in inflammatory bowel diseases. EMBO Mol Med. 2022;14(8):e15386. doi:10.15252/emmm.202115386
  • Zhong Y, Cai D, Cai W, Geng S, Chen L, Han T. Protective effect of galactooligosaccharide-supplemented enteral nutrition on intestinal barrier function in rats with severe acute pancreatitis. Clin Nutr. 2009;28(5):575–580. doi:10.1016/j.clnu.2009.04.026
  • Huang L, Zeng Y, Duan L, et al. Optimal timing of free total rhubarb anthraquinones on immune regulation in rats with severe acute pancreatitis. J Ethnopharmacol. 2023;308:116266. doi:10.1016/j.jep.2023.116266
  • Xiong E, Li Y, Min Q, et al. MZB1 promotes the secretion of J-chain-containing dimeric IgA and is critical for the suppression of gut inflammation. Proc Natl Acad Sci U S A. 2019;116(27):13480–13489. doi:10.1073/pnas.1904204116
  • Rochereau N, Roblin X, Michaud E, et al. NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn’s disease. Nat Commun. 2021;12(1):261. doi:10.1038/s41467-020-20348-0
  • Rochereau N, Drocourt D, Perouzel E, et al. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells. PLoS Biol. 2013;11(9):e1001658. doi:10.1371/journal.pbio.1001658
  • Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1):e1170. doi:10.1002/ctm2.1170
  • Zhai Y-J, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update. 2023;29(1):126–154. doi:10.1093/humupd/dmac032
  • Ehmann D, Wendler J, Koeninger L, et al. Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments. Proc Natl Acad Sci U S A. 2019;116(9):3746–3751. doi:10.1073/pnas.1817376116
  • Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11(3):752–762. doi:10.1038/mi.2017.118
  • Breugelmans T, Oosterlinck B, Arras W, et al. The role of mucins in gastrointestinal barrier function during health and disease. Lancet Gastroenterol Hepatol. 2022;7(5):455–471. doi:10.1016/S2468-1253(21)00431-3
  • Pouw RB, Ricklin D. Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol. 2021;43(6):757–771. doi:10.1007/s00281-021-00892-7
  • Benis N, Wells JM, Smits MA, et al. High-level integration of murine intestinal transcriptomics data highlights the importance of the complement system in mucosal homeostasis. BMC Genomics. 2019;20(1):1028. doi:10.1186/s12864-019-6390-x
  • Henry MW, Miller AO. A Single Dose of Antibiotics Before Removal of Orthopaedic Implants Used to Treat Below-The-Knee Fractures Did Not Reduce Surgical Site Infections at 30 Days. J Bone Joint Surg Am. 2018;100(16):1434. doi:10.2106/JBJS.18.00634
  • Xu L-T, Xu H-L, M-S F. Association between glucose-regulated protein and neutrophil apoptosis in severe acute pancreatitis. Int J Clin Exp Pathol. 2015;8(8):9300–9306.
  • Kahn A, Sottiaux M, Appelboom-Fondu J, Blum D, Rebuffat E, Levitt J. Long-term development of children monitored as infants for an apparent life-threatening event during sleep: a 10-year follow-up study. Pediatrics. 1989;83(5):668–673.
  • J-P L, Yang J, Huang J-R, et al. Immunosuppression and the infection caused by gut mucosal barrier dysfunction in patients with early severe acute pancreatitis. Front Biosci (Landmark Ed). 2013;18(3):892–900. doi:10.2741/4150
  • Manohar M, Jones EK, Rubin SJS, et al. Novel Circulating and Tissue Monocytes as Well as Macrophages in Pancreatitis and Recovery. Gastroenterology. 2021;161(6):2014–2029.e14. doi:10.1053/j.gastro.2021.08.033
  • Xu D, Xie R, Xu Z, et al. mTOR-Myc axis drives acinar-to-dendritic cell transition and the CD4+ T cell immune response in acute pancreatitis. Cell Death Dis. 2020;11(6):416. doi:10.1038/s41419-020-2517-x
  • Qiu Z, Yu P, Bai B, et al. Regulatory B10 cells play a protective role in severe acute pancreatitis. Inflamm Res. 2016;65(8):647–654. doi:10.1007/s00011-016-0947-9
  • Dervenis C, Smailis D, Hatzitheoklitos E. Bacterial translocation and its prevention in acute pancreatitis. J Hepatobiliary Pancreat Surg. 2003;10(6):415–418. doi:10.1007/s00534-002-0727-5
  • Qin H-L, Z-D S, Gao Q, Lin Q-T. Early intrajejunal nutrition: bacterial translocation and gut barrier function of severe acute pancreatitis in dogs. Hepatobiliary Pancreat Dis Int. 2002;1(1):150–154.
  • Sendler M, Weiss F-U, Golchert J, et al. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology. 2018;154(3):704–718.e10. doi:10.1053/j.gastro.2017.10.018
  • Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol. 2023;21(4):260–274. doi:10.1038/s41579-022-00794-x
  • Kim J-E, Li B, Fei L, et al. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity. 2022;55(12):2300–2317.e6. doi:10.1016/j.immuni.2022.11.003
  • Donaldson DS, Pollock J, Vohra P, Stevens MP, Mabbott NA. Microbial Stimulation Reverses the Age-Related Decline in M Cells in Aged Mice. iScience. 2020;23(6):101147. doi:10.1016/j.isci.2020.101147
  • Borbet TC, Pawline MB, Li J, et al. Disruption of the early-life microbiota alters Peyer’s patch development and germinal center formation in gastrointestinal-associated lymphoid tissue. iScience. 2023;26(6):106810. doi:10.1016/j.isci.2023.106810
  • Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017;4:14. doi:10.1186/s40779-017-0122-9
  • Hou Q, Ye L, Liu H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2018;25(9):1657–1670. doi:10.1038/s41418-018-0070-2
  • Goguyer-Deschaumes R, Waeckel L, Killian M, Rochereau N, Paul S. Metabolites and secretory immunoglobulins: messengers and effectors of the host-microbiota intestinal equilibrium. Trends Immunol. 2022;43(1):63–77. doi:10.1016/j.it.2021.11.005
  • Tan J, Ni D, Taitz J, et al. Dietary protein increases T-cell-independent sIgA production through changes in gut microbiota-derived extracellular vesicles. Nat Commun. 2022;13(1):4336. doi:10.1038/s41467-022-31761-y
  • Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–2243. doi:10.1136/gutjnl-2020-322260
  • Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16(2):164–177. doi:10.15252/embr.201439263
  • Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi:10.1126/science.1110591
  • Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev. 2023;103(2):1487–1564. doi:10.1152/physrev.00018.2022
  • Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–339. doi:10.1136/gutjnl-2015-309990
  • Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230–238. doi:10.1111/imm.12933
  • Huang C, Chen J, Wang J, et al. Dysbiosis of Intestinal Microbiota and Decreased Antimicrobial Peptide Level in Paneth Cells during Hypertriglyceridemia-Related Acute Necrotizing Pancreatitis in Rats. Front Microbiol. 2017;8:776. doi:10.3389/fmicb.2017.00776
  • Pagliari D, Saviano A, Newton EE, et al. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm. 2018;2018:7946431. doi:10.1155/2018/7946431
  • Li X, He C, Li N, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice. Gut Microbes. 2020;11(6):1774–1789. doi:10.1080/19490976.2020.1770042
  • Peng J-S, Liu Z-H, Li C-J, et al. Development of a real-time PCR method for the detection of bacterial colonization in rat models of severe acute pancreatitis. Chin Med J (Engl). 2010;123(3):326–331.
  • Wang Z, Liu J, Li F, et al. Mechanisms of Qingyi Decoction in Severe Acute Pancreatitis-Associated Acute Lung Injury via Gut Microbiota: targeting the Short-Chain Fatty Acids-Mediated AMPK/NF-κB/NLRP3 Pathway. Microbiol Spectr. 2023;11(4):e0366422. doi:10.1128/spectrum.03664-22
  • Tan C, Ling Z, Huang Y, et al. Dysbiosis of Intestinal Microbiota Associated With Inflammation Involved in the Progression of Acute Pancreatitis. Pancreas. 2015;44(6):868–875. doi:10.1097/MPA.0000000000000355
  • Zhang XM, Zhang ZY, Zhang CH, Wu J, Wang YX, Zhang GX. Intestinal Microbial Community Differs between Acute Pancreatitis Patients and Healthy Volunteers. Biomed Environ Sci. 2018;31(1):81–86. doi:10.3967/bes2018.010
  • Lei Y, Tang L, Liu S, et al. Parabacteroides produces acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration. Microbiome. 2021;9(1):115. doi:10.1186/s40168-021-01065-2
  • Zhou H, Gao J, Wu W, et al. Octreotide ameliorates intestinal dysmotility by interstitial cells of Cajal protection in a rat acute necrotizing pancreatitis model. Pancreas. 2011;40(8):1226–1233. doi:10.1097/MPA.0b013e318220afab
  • Wang H, Li C, Jiang Y, Li H, Zhang D. Effects of Bacterial Translocation and Autophagy on Acute Lung Injury Induced by Severe Acute Pancreatitis. Gastroenterol Res Pract. 2020;2020:8953453. doi:10.1155/2020/8953453
  • Piao X, Liu B, Sui X, et al. Picroside II Improves Severe Acute Pancreatitis-Induced Intestinal Barrier Injury by Inactivating Oxidative and Inflammatory TLR4-Dependent PI3K/AKT/NF-κB Signaling and Improving Gut Microbiota. Oxid Med Cell Longev. 2020;2020:3589497. doi:10.1155/2020/3589497
  • Pan X, Fang X, Wang F, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol. 2019;176(23):4446–4461. doi:10.1111/bph.14806
  • Kumar M, Kissoon-Singh V, Coria AL, Moreau F, Chadee K. Probiotic mixture VSL#3 reduces colonic inflammation and improves intestinal barrier function in Muc2 mucin-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2017;312(1):G34–G45. doi:10.1152/ajpgi.00298.2016
  • Zhu L, Zhang D, Zhu H, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe-/- mice. Atherosclerosis. 2018;268:117–126. doi:10.1016/j.atherosclerosis.2017.11.023
  • Singh P, Garg PK. Pathophysiological mechanisms in acute pancreatitis: current understanding. Indian J Gastroenterol. 2016;35(3):153–166. doi:10.1007/s12664-016-0647-y
  • Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–850. doi:10.1038/s41385-019-0160-6
  • Zhou B, Yuan Y, Zhang S, et al. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Front Immunol. 2020;11:575. doi:10.3389/fimmu.2020.00575
  • Mjösberg J, Rao A. Lung inflammation originating in the gut. Science. 2018;359(6371):36–37. doi:10.1126/science.aar4301
  • Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol. 2021;18(11):2461–2471. doi:10.1038/s41423-021-00726-4
  • Zundler S, Becker E, Schulze LL, Neurath MF. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut. 2019;68(9):1688–1700. doi:10.1136/gutjnl-2018-317977
  • Nan X, Zhao W, Liu W-H, et al. Bifidobacterium animalis subsp. lactis BL-99 ameliorates colitis-related lung injury in mice by modulating short-chain fatty acid production and inflammatory monocytes/macrophages. Food Funct. 2023;14(2):1099–1112. doi:10.1039/d2fo03374g
  • Tian X, Hellman J, Horswill AR, Crosby HA, Francis KP, Prakash A. Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice. Front Microbiol. 2019;10:159. doi:10.3389/fmicb.2019.00159
  • Wang Y-H, Yan -Z-Z, Luo S-D, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice. Eur Respir J. 2023;61(2):2200840. doi:10.1183/13993003.00840-2022
  • Liu Q, Tian X, Maruyama D, Arjomandi M, Prakash A. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids’ immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression. Am J Physiol Lung Cell Mol Physiol. 2021;321(1):L65–L78. doi:10.1152/ajplung.00421.2020
  • Golomb SM, Guldner IH, Zhao A, et al. Multi-modal Single-Cell Analysis Reveals Brain Immune Landscape Plasticity during Aging and Gut Microbiota Dysbiosis. Cell Rep. 2020;33(9):108438. doi:10.1016/j.celrep.2020.108438
  • Pu Q, Lin P, Gao P, et al. Gut Microbiota Regulate Gut-Lung Axis Inflammatory Responses by Mediating ILC2 Compartmental Migration. J Immunol. 2021;207(1):257–267. doi:10.4049/jimmunol.2001304
  • Erttmann SF, Swacha P, Aung KM, et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity. 2022;55(5):847–861.e10. doi:10.1016/j.immuni.2022.04.006
  • Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. Genomics Proteomics Bioinf. 2018;16(1):33–49. doi:10.1016/j.gpb.2017.06.002
  • Zhu Y, Mei Q, Fu Y, Zeng Y. Alteration of gut microbiota in acute pancreatitis and associated therapeutic strategies. Biomed Pharmacother. 2021;141:111850. doi:10.1016/j.biopha.2021.111850
  • Mei Q-X, Hu J-H. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis. Acta Pharmacol Sin. 2021;42(6):942–953. doi:10.1038/s41401-020-00581-5
  • W-J G, Liu J-C. Probiotics in patients with severe acute pancreatitis. Crit Care. 2014;18(4):446. doi:10.1186/cc13968
  • Lau HCH, Sung JJ-Y, Yu J. Gut microbiota: impacts on gastrointestinal cancer immunotherapy. Gut Microbes. 2021;13(1):1–21. doi:10.1080/19490976.2020.1869504
  • Dong J, Ping L, Cao T, et al. Immunomodulatory effects of the Bifidobacterium longum BL-10 on lipopolysaccharide-induced intestinal mucosal immune injury. Front Immunol. 2022;13:947755. doi:10.3389/fimmu.2022.947755
  • Mandelbaum N, Zhang L, Carasso S, et al. Extracellular vesicles of the Gram-positive gut symbiont Bifidobacterium longum induce immune-modulatory, anti-inflammatory effects. NPJ Biofilms Microbiomes. 2023;9(1):30. doi:10.1038/s41522-023-00400-9
  • Zhang M, Zheng Y, Sun Z, et al. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr. 2023;11(2):e0360922. doi:10.1128/spectrum.03609-22
  • Xie Z, Li M, Qian M, Yang Z, Han X. Co-Cultures of Lactobacillus acidophilus and Bacillus subtilis Enhance Mucosal Barrier by Modulating Gut Microbiota-Derived Short-Chain Fatty Acids. Nutrients. 2022;14(21):4475. doi:10.3390/nu14214475
  • Stoeva MK, Garcia-So J, Justice N, et al. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes. 2021;13(1):1–28. doi:10.1080/19490976.2021.1907272
  • van Minnen LP, Timmerman HM, Lutgendorff F, et al. Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery. 2007;141(4):470–480. doi:10.1016/j.surg.2006.10.007
  • Muftuoglu MAT, Isikgor S, Tosun S, Saglam A. Effects of probiotics on the severity of experimental acute pancreatitis. Eur J Clin Nutr. 2006;60(4):464–468. doi:10.1038/sj.ejcn.1602338
  • Lutgendorff F, Trulsson LM, van Minnen LP, et al. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2008;295(5):G1111–G1121. doi:10.1152/ajpgi.00603.2007
  • Horst NL, Marques RG, Diestel CF, et al. Effects of probiotic supplementation on markers of acute pancreatitis in rats. Curr Ther Res Clin Exp. 2009;70(2):136–148. doi:10.1016/j.curtheres.2009.04.004
  • Mundi MS, Shah M, Hurt RT. When Is It Appropriate to Use Glutamine in Critical Illness? Nutr Clin Pract. 2016;31(4):445–450. doi:10.1177/0884533616651318
  • Jabłońska B, Mrowiec S. Nutritional Support in Patients with Severe Acute Pancreatitis-Current Standards. Nutrients. 2021;13(5):1498. doi:10.3390/nu13051498
  • Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10(11):1564. doi:10.3390/nu10111564
  • Dong S, Zhao Z, Li X, Chen Z, Jiang W, Zhou W. Efficacy of Glutamine in Treating Severe Acute Pancreatitis: a Systematic Review and Meta-Analysis. Front Nutr. 2022;9:865102. doi:10.3389/fnut.2022.865102
  • Wu D, Su S, Zha X, et al. Glutamine promotes O-GlcNAcylation of G6PD and inhibits AGR2 S-glutathionylation to maintain the intestinal mucus barrier in burned septic mice. Redox Biol. 2023;59:102581. doi:10.1016/j.redox.2022.102581
  • Lu T, Li Q, Lin W, et al. Gut Microbiota-Derived Glutamine Attenuates Liver Ischemia/Reperfusion Injury via Macrophage Metabolic Reprogramming. Cell Mol Gastroenterol Hepatol. 2023;15(5):1255–1275. doi:10.1016/j.jcmgh.2023.01.004
  • Weimann A, Felbinger TW. Gastrointestinal dysmotility in the critically ill: a role for nutrition. Curr Opin Clin Nutr Metab Care. 2016;19(5):353–359. doi:10.1097/MCO.0000000000000300
  • Newberry C, Schucht J. Use of Enteral Nutrition for Gastrointestinal Bleeding Prophylaxis in the Critically Ill: review of Current Literature. Curr Nutr Rep. 2018;7(3):116–120. doi:10.1007/s13668-018-0232-3
  • Zhang -M-M, Cheng J-Q, Y-R L, Zhai H-J, Chen Y-N, X-T W. Effects of enteral nutrition and parenteral nutrition on gut epithelial tight junction and barrier function in rats after surgical stress. Sichuan Da Xue Xue Bao Yi Xue Ban. 2009;40(4):615–618.
  • Bargatze RF, Jutila MA, Butcher EC. Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity. 1995;3(1):99–108. doi:10.1016/1074-7613(95)90162-0
  • Wan X, Bi J, Gao X, et al. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice. Nutrients. 2015;7(8):6294–6312. doi:10.3390/nu7085288
  • Zhang J, W-Q Y, Wei T, et al. Effects of Short-Peptide-Based Enteral Nutrition on the Intestinal Microcirculation and Mucosal Barrier in Mice with Severe Acute Pancreatitis. Mol Nutr Food Res. 2020;64(5):e1901191. doi:10.1002/mnfr.201901191
  • Fan J, Meng Q, Guo G, et al. Effects of early enteral nutrition supplemented with arginine on intestinal mucosal immunity in severely burned mice. Clin Nutr. 2010;29(1):124–130. doi:10.1016/j.clnu.2009.07.005
  • Nakashima I, Horibe M, Sanui M, et al. Impact of Enteral Nutrition Within 24 Hours Versus Between 24 and 48 Hours in Patients With Severe Acute Pancreatitis: a Multicenter Retrospective Study. Pancreas. 2021;50(3):371–377. doi:10.1097/MPA.0000000000001768
  • Yang C, Wang T, Chen J, et al. Traditional Chinese Medicine Formulas Alleviate Acute Pancreatitis: pharmacological Activities and Mechanisms. Pancreas. 2021;50(10):1348–1356. doi:10.1097/MPA.0000000000001931
  • Wei T-F, Zhao L, Huang P, et al. Qing-Yi Decoction in the Treatment of Acute Pancreatitis: an Integrated Approach Based on Chemical Profile, Network Pharmacology, Molecular Docking and Experimental Evaluation. Front Pharmacol. 2021;12:590994. doi:10.3389/fphar.2021.590994
  • Yang D-Y, Duan S-B, Aili J-T. Effect of qingyi decoction in treating severe acute pancreatitis and its impacts on blood level of tumor necrosis factor-alpha, interleukin-6 and interleukin-8. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2009;29(12):1122–1124.
  • Chen W, Yang X, Huang L, et al. Qing-Yi decoction in participants with severe acute pancreatitis: a randomized controlled trial. Chin Med. 2015;10:11. doi:10.1186/s13020-015-0039-8
  • Ji CH, Tang CW, Feng WM, Bao Y, Yao LQ. A Chinese Herbal Decoction, Huoxue Qingyi Decoction, Promotes Rehabilitation of Patients with Severe Acute Pancreatitis: a Retrospective Study. Evid Based Complement Alternat Med. 2016;2016:3456510. doi:10.1155/2016/3456510
  • Li J, Zhang S, Zhou R, Zhang J, Li Z-F. Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis. World J Gastroenterol. 2017;23(20):3615–3623. doi:10.3748/wjg.v23.i20.3615
  • Wang G-Y, Shang D, Zhang G-X, et al. Qingyi decoction attenuates intestinal epithelial cell injury via the calcineurin/nuclear factor of activated T-cells pathway. World J Gastroenterol. 2022;28(29):3825–3837. doi:10.3748/wjg.v28.i29.3825
  • Zhang J-W, Zhang G-X, Chen H-L, et al. Therapeutic effect of Qingyi decoction in severe acute pancreatitis-induced intestinal barrier injury. World J Gastroenterol. 2015;21(12):3537–3546. doi:10.3748/wjg.v21.i12.3537