43
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Development of Biomarkers and Prognosis Model of Mortality Risk in Patients with COVID-19

, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 2445-2457 | Received 12 Nov 2023, Accepted 04 Apr 2024, Published online: 22 Apr 2024

References

  • Huang S, Gao Z, Wang S. China’s COVID-19 reopening measures—warriors and weapons. Lancet. 2023;401(10377):643–644. doi:10.1016/S0140-6736(23)00213-1
  • Huyut MT, İlkbahar F. The effectiveness of blood routine parameters and some biomarkers as a potential diagnostic tool in the diagnosis and prognosis of Covid-19 disease. Int Immunopharmacol. 2021;98:107838. doi:10.1016/j.intimp.2021.107838
  • Mertoglu C, Huyut MT, Arslan Y, Ceylan Y, Coban TA. How do routine laboratory tests change in coronavirus disease 2019? Scand J Clin Lab Invest. 2021;81(1):24–33. doi:10.1080/00365513.2020.1855470
  • Tahir Huyut M, Huyut Z, İlkbahar F, Mertoğlu C. What is the impact and efficacy of routine immunological, biochemical and hematological biomarkers as predictors of COVID-19 mortality? Int Immunopharmacol. 2022;105:108542. doi:10.1016/j.intimp.2022.108542
  • Huyut MT, Huyut Z. Forecasting of oxidant/antioxidant levels of COVID-19 patients by using expert models with biomarkers used in the diagnosis/prognosis of COVID-19. Int Immunopharmacol. 2021;100:108127. doi:10.1016/j.intimp.2021.108127
  • Hirabara SM, Serdan TDA, Gorjao R, et al. SARS-COV-2 variants: differences and potential of immune evasion. Front Cell Infect Microbiol. 2022;11:781429. doi:10.3389/fcimb.2021.781429
  • Badua CLDC, Baldo KAT, Medina PMB. Genomic and proteomic mutation landscapes of SARS‐CoV‐2. J med Virol. 2021;93(3):1702–1721. doi:10.1002/jmv.26548
  • Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920–1930. doi:10.1161/CIRCULATIONAHA.115.001593
  • Mertoglu C, Huyut MT, Olmez H, Tosun M, Kantarci M, Coban TA. COVID-19 is more dangerous for older people and its severity is increasing: a case-control study. Med Gas Res. 2022;12(2):51–54. doi:10.4103/2045-9912.325992
  • Huyut MT, Üstündağ H. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: a retrospective observational study. Med Gas Res. 2022;12(2):60–66. doi:10.4103/2045-9912.326002
  • Velichko A, Huyut MT, Belyaev M, Izotov Y, Korzun D. Machine learning sensors for diagnosis of COVID-19 disease using routine blood values for internet of things application. Sensors. 2022;22(20):7886. doi:10.3390/s22207886
  • Huyut MT, Velichko A. Diagnosis and prognosis of COVID-19 disease using routine blood values and lognnet neural network. Sensors. 2022;22(13):4820. doi:10.3390/s22134820
  • Huyut MT, Velichko A, Belyaev M. Detection of risk predictors of COVID-19 mortality with classifier machine learning models operated with routine laboratory biomarkers. Appl Sci. 2022;12(23):12180. doi:10.3390/app122312180
  • Huyut MT, Huyut Z. Effect of ferritin, INR, and D-Dimer immunological parameters levels as predictors of COVID-19 mortality: a strong prediction with the decision trees. Heliyon. 2023;9(3):e14015. doi:10.1016/j.heliyon.2023.e14015
  • Huyut MT. Automatic detection of severely and mildly infected COVID-19 patients with supervised machine learning models. Ing Rech Biomed. 2023;44(1):100725. doi:10.1016/j.irbm.2022.05.006
  • Liao SG, Lin Y, Kang DD, et al. Missing value imputation in high-dimensional phenomic data: imputable or not, and how? BMC Bioinf. 2014;15(1):346. doi:10.1186/s12859-014-0346-6
  • Adamidi ES, Mitsis K, Nikita KS. Artificial intelligence in clinical care amidst COVID-19 pandemic: a systematic review. Comput. Struct. Biotechnol J. 2021;19:2833–2850. doi:10.1016/j.csbj.2021.05.010
  • Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. doi:10.1056/NEJMra2026131
  • Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J med Virol. 2021;93(1):250–256. doi:10.1002/jmv.26232
  • Zhu Q, Kang J, Miao H, et al. Low‐dose cytokine‐induced neutral ceramidase secretion from INS ‐1 cells via exosomes and its anti‐apoptotic effect. FEBS J. 2014;281(12):2861–2870. doi:10.1111/febs.12826
  • Kato A. Group 2 innate lymphoid cells in airway diseases. Chest. 2019;156(1):141–149. doi:10.1016/j.chest.2019.04.101
  • Del Valle DM, Kim-Schulze S, Huang -H-H, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–1643. doi:10.1038/s41591-020-1051-9
  • Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19); preprint. Infect Dis. 2020. doi:10.1101/2020.02.18.20024364
  • Ma A, Zhang L, Ye X, et al. High levels of circulating IL-8 and soluble IL-2R are associated with prolonged illness in patients with severe COVID-19. Front Immunol. 2021;12:626235. doi:10.3389/fimmu.2021.626235
  • Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7(6):1543–1588. doi:10.7150/thno.15625
  • Melero I, Villalba-Esparza M, Recalde-Zamacona B, et al. Neutrophil extracellular traps, local il-8 expression, and cytotoxic t-lymphocyte response in the lungs of patients with fatal COVID-19. CHEST. 2022;162(5):1006–1016. doi:10.1016/j.chest.2022.06.007
  • Smit JJ, Lukacs NW. The missing link: chemokine receptors and tissue matrix breakdown in COPD. Trends Pharmacol Sci. 2006;27(11):555–557. doi:10.1016/j.tips.2006.09.003
  • Govindaraju V, Michoud M-C, Al-Chalabi M, Ferraro P, Powell WS, Martin JG. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol. 2006;291(5):C957–C965. doi:10.1152/ajpcell.00451.2005
  • Zizzo G, Tamburello A, Castelnovo L, et al. Immunotherapy of COVID-19: inside and beyond IL-6 Signalling. Front Immunol. 2022;13:795315. doi:10.3389/fimmu.2022.795315
  • Coomes EA, Haghbayan H. Interleukin‐6 in Covid‐19: a systematic review and meta‐analysis. Rev Med Virol. 2020;30(6):1–9. doi:10.1002/rmv.2141
  • McConnell MJ, Kawaguchi N, Kondo R, et al. Liver injury in COVID-19 and IL-6 trans-signaling-induced endotheliopathy. J Hepatol. 2021;75(3):647–658. doi:10.1016/j.jhep.2021.04.050
  • Li X, Pan X, Li Y, et al. Cardiac injury associated with severe disease or ICU admission and death in hospitalized patients with COVID-19: a meta-analysis and systematic review. Crit Care. 2020;24(1):468. doi:10.1186/s13054-020-03183-z
  • He F, Quan Y, Lei M, et al. Clinical features and risk factors for ICU admission in COVID-19 patients with cardiovascular diseases. Aging and Disease. 2020;11(4):763. doi:10.14336/AD.2020.0622
  • Martínez-Gómez LE, Herrera-López B, Martinez-Armenta C, et al. ACE and ACE2 gene variants are associated with severe outcomes of COVID-19 in men. Front Immunol. 2022;13:812940. doi:10.3389/fimmu.2022.812940
  • Wang W, Bodiga S, Das SK, Lo J, Patel V, Oudit GY. Role of ACE2 in diastolic and systolic heart failure. Heart Fail Rev. 2012;17(4–5):683–691. doi:10.1007/s10741-011-9259-x