61
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Shared Immune Associations Between COVID-19 and Inflammatory Bowel Disease: A Cross-Sectional Observational Study in Shanghai, China

ORCID Icon, , , , & ORCID Icon
Pages 1929-1940 | Received 14 Nov 2023, Accepted 20 Mar 2024, Published online: 27 Mar 2024

References

  • Koelle K, Martin MA, Antia R, et al. The changing epidemiology of SARS-CoV-2. Science. 2022;375(6585):1116–1121. doi:10.1126/science.abm4915
  • Al-Aly Z, Topol E. Solving the puzzle of long covid. Science. 2024;383(6685):830–832. doi:10.1126/science.adl0867
  • Garg M, Christensen B, Lubel JS. Gastrointestinal ACE2, COVID-19 and IBD: opportunity in the face of tragedy? Gastroenterology. 2020;159(4):1623–1624.e3. doi:10.1053/j.gastro.2020.04.051
  • Zollner A, Koch R, Jukic A, et al. Postacute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. Gastroenterology. 2022;163(2):495–506.e8. doi:10.1053/j.gastro.2022.04.037
  • Rutigliani M, Bozzo M, Barberis A, et al. Case report: a peculiar case of inflammatory colitis after SARS-CoV-2 infection. Front Immunol. 2022;13:849140. doi:10.3389/fimmu.2022.849140
  • Ordás I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet. 2012;380(9853):1606–1619. doi:10.1016/S0140-6736(12)60150-0
  • Torres J, Mehandru S, Colombel J-F, et al. Crohn’s disease. Lancet. 2017;389(10080):1741–1755. doi:10.1016/S0140-6736(16)31711-1
  • Chang JT. Pathophysiology of inflammatory bowel diseases. N Engl J Med. 2020;383(27):2652–2664. doi:10.1056/NEJMra2002697
  • Tun HM, Peng Y, Massimino L, et al. Gut virome in inflammatory bowel disease and beyond. Gut. 2024;73(2):350–360. doi:10.1136/gutjnl-2023-330001
  • National Health Commission of the People’s Republic of China. Diagnosis and treatment plan for novel coronavirus pneumonia (trial version 9). Int J Epidemiol Infect Dis. 2022;49:73–80. Chinese, Abstract in English.
  • Harvey RF, Bradshaw JM. A simple index of Crohn’s-disease activity. Lancet Lond Engl. 1980;1(8167):514. doi:10.1016/S0140-6736(80)92767-1
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8
  • Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 2011;12(1):35. doi:10.1186/1471-2105-12-35
  • Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. In: Hancock J, editor. Bioinformatics. Vol. 33. 2017:2938–2940.
  • Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-6
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  • Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(D1):D1049–1056. doi:10.1093/nar/gku1179
  • Verstockt B, Verstockt S, Abdu Rahiman S, et al. Intestinal receptor of SARS-CoV-2 in inflamed IBD tissue seems downregulated by HNF4A in ileum and upregulated by interferon regulating factors in colon. J Crohn's Colitis. 2021;15(3):485–498. doi:10.1093/ecco-jcc/jjaa185
  • Kokkotis G, Kitsou K, Xynogalas I, et al. Systematic review with meta-analysis: COVID-19 outcomes in patients receiving anti-TNF treatments. Aliment Pharmacol Ther. 2022;55(2):154–167. doi:10.1111/apt.16717
  • Tripathi K, Godoy Brewer G, Thu Nguyen M, et al. COVID-19 and outcomes in patients with inflammatory bowel disease: systematic review and meta-analysis. Inflamm Bowel Dis. 2022;28(8):1265–1279. doi:10.1093/ibd/izab236
  • Guimarães PO, Quirk D, Furtado RH, et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;385:406–415.
  • Ferrarini A, Vacca A, Solimando AG, et al. Early administration of tofacitinib in COVID‐19 pneumonitis: an open randomised controlled trial. Eur J Clin Invest. 2023;53(2):e13898. doi:10.1111/eci.13898
  • Rubin DT, Modesto I, Vermeire S, et al. Worldwide post‐marketing safety surveillance experience with tofacitinib in ulcerative colitis. Aliment Pharmacol Ther. 2022;55(3):302–310. doi:10.1111/apt.16619
  • Shen S, Gong M, Wang G, et al. COVID-19 and Gut Injury. Nutrients. 2022;14(20):4409. doi:10.3390/nu14204409
  • Lee JS, Park S, Jeong HW, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol. 2020;5(49):eabd1554. doi:10.1126/sciimmunol.abd1554
  • Jeong H-W, Lee JS, J-H K, et al. Corticosteroids reduce pathologic interferon responses by downregulating STAT1 in patients with high-risk COVID-19. Exp Mol Med. 2023;55:653–664.
  • Lu Q, Yang MF, Liang YJ, et al. Immunology of inflammatory bowel disease: molecular mechanisms and therapeutics. J Inflamm Res. 2022;15:1825–1844. doi:10.2147/JIR.S353038
  • Woznicki JA, Saini N, Flood P, et al. TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis. 2021;12(10):864. doi:10.1038/s41419-021-04151-3
  • Lau SKP, Lau CCY, Chan K-H, et al. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol. 2013;94(12):2679–2690. doi:10.1099/vir.0.055533-0
  • Satarker S, Tom AA, Shaji RA, et al. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad Med. 2021;133(5):489–507. doi:10.1080/00325481.2020.1855921
  • Ricciuto A, Lamb CA, Benchimol EI, et al. Inflammatory bowel disease clinical activity is associated with COVID-19 severity especially in younger patients. J Crohn's Colitis. 2022;16(4):591–600. doi:10.1093/ecco-jcc/jjab172
  • Liu S, Zhao W, Lan P, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell. 2021;12(5):331–345. doi:10.1007/s13238-020-00745-3
  • Chen L, Cao S, Lin Z, et al. NOD-like receptors in autoimmune diseases. Acta Pharmacol Sin. 2021;42(11):1742–1756. doi:10.1038/s41401-020-00603-2
  • Jin J, Zhou T-J, Ren G-L, et al. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin. 2022;43:2789–2806.
  • Rodrigues TS, de SKSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med. 2021;218(3):e20201707. doi:10.1084/jem.20201707
  • Ranson N, Veldhuis M, Mitchell B, et al. NLRP3-dependent and -independent processing of interleukin (IL)-1β in active ulcerative colitis. Int J Mol Sci. 2018;20(1):57. doi:10.3390/ijms20010057
  • Chen X, Liu G, Yuan Y, et al. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019;10(12):906. doi:10.1038/s41419-019-2157-1
  • Hill JR, Coll RC, Sue N, et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem. 2017;12(17):1449–1457. doi:10.1002/cmdc.201700270
  • Wang S, Yang H, Yu L, et al. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway. PLoS One. 2014;9(8):e104745. doi:10.1371/journal.pone.0104745
  • Saadane A, Masters S, DiDonato J, et al. Parthenolide inhibits IkappaB kinase, NF-kappaB activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol. 2007;36(6):728–736. doi:10.1165/rcmb.2006-0323OC
  • He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):2550. doi:10.1038/s41467-018-04947-6
  • Wang S, Zhang Y, Saas P, et al. Oridonin’s therapeutic effect: suppressing T h1/ T h17 simultaneously in a mouse model of C rohn’s disease. J Gastroenterol Hepatol. 2015;30(3):504–512. doi:10.1111/jgh.12710
  • Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol. 2023;4(12):1014–1036. doi:10.1039/D3CB00096F
  • Sun Q, Liu X, Li X. Peptidoglycan-based immunomodulation. Appl Microbiol Biotechnol. 2022;106(3):981–993. doi:10.1007/s00253-022-11795-4