44
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of Mitophagy-Associated Genes for the Prediction of Metabolic Dysfunction-Associated Steatohepatitis Based on Interpretable Machine Learning Models

, , , , , & ORCID Icon show all
Pages 2711-2730 | Received 17 Nov 2023, Accepted 04 Apr 2024, Published online: 02 May 2024

References

  • Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi:10.1002/hep.28431
  • Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851–861. doi:10.1016/S2468-1253(22)00165-0
  • Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. doi:10.1016/S0140-6736(20)32511-3
  • Ye J, Zhuang X, Li X, et al. Novel metabolic classification for extrahepatic complication of metabolic associated fatty liver disease: a data-driven cluster analysis with international validation. Metabolism. 2022;136:155294. doi:10.1016/j.metabol.2022.155294
  • Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–209. doi:10.1016/j.jhep.2020.03.039
  • Geier A, Tiniakos D, Denk H, Trauner M. From the origin of NASH to the future of metabolic fatty liver disease. Gut. 2021;70(8):1570–1579. doi:10.1136/gutjnl-2020-323202
  • Glancy B. Visualizing mitochondrial form and function within the cell. Trends Mol Med. 2020;26(1):58–70. doi:10.1016/j.molmed.2019.09.009
  • Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736–766. doi:10.7150/thno.79876
  • Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021;40(3):e104705. doi:10.15252/embj.2020104705
  • Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170–R185. doi:10.1016/j.cub.2018.01.004
  • Sharma R, Reinstadler B, Engelstad K, et al. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021;131(2):e136055. doi:10.1172/JCI136055
  • Dornas W, Schuppan D. Mitochondrial oxidative injury: a key player in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2020;319(3):G400–G411. doi:10.1152/ajpgi.00121.2020
  • Edmunds LR, Xie B, Mills AM, et al. Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin resistance. Mol Metab. 2020;41:101051. doi:10.1016/j.molmet.2020.101051
  • Williams JA, Ni HM, Ding Y, Ding WX. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;309(5):G324–340. doi:10.1152/ajpgi.00108.2015
  • Pei Y, Chen S, Zhou F, Xie T, Cao H. Construction and evaluation of Alzheimer’s disease diagnostic prediction model based on genes involved in mitophagy. Front Aging Neurosci. 2023;15:1146660. doi:10.3389/fnagi.2023.1146660
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Lan T, Yu Y, Zhang J, et al. Cordycepin ameliorates nonalcoholic steatohepatitis by Activation of the AMP-activated protein kinase signaling pathway. Hepatology. 2021;74(2):686–703. doi:10.1002/hep.31749
  • Markovich Gordon M, Moser AM, Rubin E. Unsupervised analysis of classical biomedical markers: robustness and medical relevance of patient clustering using bioinformatics tools. PLoS One. 2012;7(3):e29578. doi:10.1371/journal.pone.0029578
  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 2013;14:7. doi:10.1186/1471-2105-14-7
  • Yang C, Zhang H, Chen M, et al. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. Elife. 2022:11:e71880. doi:10.7554/eLife.71880
  • Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 Profiles. Cell. 2017;171(6):1437–1452.e17. doi:10.1016/j.cell.2017.10.049
  • Mittal S, El-Serag HB, Sada YH, et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2016;14(1):124–131.e1. doi:10.1016/j.cgh.2015.07.019
  • Undamatla R, Fagunloye OG, Chen J, et al. Reduced mitophagy is an early feature of NAFLD and liver-specific PARKIN knockout hastens the onset of steatosis, inflammation and fibrosis. Sci Rep. 2023;13(1):7575. doi:10.1038/s41598-023-34710-x
  • LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci. 2024;81(1):34. doi:10.1007/s00018-023-05061-7
  • Ramanathan R, Patwa SA, Ali AH, Ibdah JA. Thyroid hormone and mitochondrial dysfunction: therapeutic implications for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cells. 2023;12(24):2806. doi:10.3390/cells12242806
  • Sarabhai T, Kahl S, Gancheva S, et al. Loss of mitochondrial adaptation associates with deterioration of mitochondrial turnover and structure in metabolic dysfunction-associated steatotic liver disease. Metabolism. 2024;151:155762. doi:10.1016/j.metabol.2023.155762
  • Theys C, Ibrahim J, Mateiu L, et al. Mitochondrial GpC and CpG DNA hypermethylation cause metabolic stress-induced mitophagy and cholestophagy. Int J Mol Sci. 2023;24(22):16412. doi:10.3390/ijms242216412
  • Young LC, Rodriguez-Viciana P. MRAS: a close but understudied member of the RAS family. Cold Spring Harb Perspect Med. 2018;8(12):a033621. doi:10.1101/cshperspect.a033621
  • Lai LP, Fer N, Burgan W, et al. Classical RAS proteins are not essential for paradoxical ERK activation induced by RAF inhibitors. Proc Natl Acad Sci U S A. 2022;119(5):e2113491119. doi:10.1073/pnas.2113491119
  • Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 2020;27(3):1023–1035. doi:10.1038/s41418-019-0395-5
  • Kota P, Terrell EM, Ritt DA, Insinna C, Westlake CJ, Morrison DK. M-Ras/Shoc2 signaling modulates E-cadherin turnover and cell-cell adhesion during collective cell migration. Proc Natl Acad Sci U S A. 2019;116(9):3536–3545. doi:10.1073/pnas.1805919116
  • Freyer J, Behrensen M, Aherrahrou Z, Berbee JFP, Schunkert H, Erdmann J. MRas-knock-out mouse: b-cell phenotype and reduced macrophage infiltration in atherosclerotic plaques at the aortic root. Eur Heart J. 2013;34:442.
  • Egami Y, Araki N. Transient recruitment of M-Ras GTPase to phagocytic cups in RAW264 macrophages during FcγR-mediated phagocytosis. Microscopy. 2018;67(2):68–74. doi:10.1093/jmicro/dfx131
  • Zoheir KMA, Abd-Rabou AA, Harisa GI, et al. Gene expression of IQGAPs and Ras families in an experimental mouse model for hepatocellular carcinoma: a mechanistic study of cancer progression. Int J Clin Exp Pathol. 2015;8(8):8821–8831.
  • Borg Distefano M, Hofstad Haugen L, Wang Y, et al. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci. 2018;131(17):jcs216630. doi:10.1242/jcs.216630
  • Vestre K, Persiconi I, Borg Distefano M, et al. Rab7b regulates dendritic cell migration by linking lysosomes to the actomyosin cytoskeleton. J Cell Sci. 2021;134(18):jcs259221. doi:10.1242/jcs.259221
  • Kjos I, Borg Distefano M, Sætre F, et al. Rab7b modulates autophagic flux by interacting with Atg4B. EMBO Rep. 2017;18(10):1727–1739. doi:10.15252/embr.201744069
  • Cai M, Zhao J, Liu Q, Wang X, Wang Y. FAM134B improves preadipocytes differentiation by enhancing mitophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(12):158508. doi:10.1016/j.bbalip.2019.08.004
  • Mookherjee D, Das S, Mukherjee R, et al. RETREG1/FAM134B mediated autophagosomal degradation of AMFR/GP78 and OPA1 -a dual organellar turnover mechanism. Autophagy. 2021;17(7):1729–1752. doi:10.1080/15548627.2020.1783118