36
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Construction of Immune-Related Diagnostic Model for Latent Tuberculosis Infection and Active Tuberculosis

, , , , , & show all
Pages 2499-2511 | Received 23 Nov 2023, Accepted 16 Apr 2024, Published online: 25 Apr 2024

References

  • Segueni N, Jacobs M, Ryffel B. Innate type 1 immune response, but not IL-17 cells control tuberculosis infection. Biomedical J. 2021;44(2):165–171.
  • Global tuberculosis report 2022. Geneva: World Health organization;2022.
  • Houben RM, Dodd PJ, Metcalfe JZ. The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Med. 2016;13(10):e1002152. doi:10.1371/journal.pmed.1002152
  • Churchyard G, Kim P, Shah NS, et al. What we know about tuberculosis transmission: An overview. J Infect Dis. 2017;216(suppl_6):S629–S635. doi:10.1093/infdis/jix362
  • Chee CBE, Reves R, Zhang Y, Belknap R. Latent tuberculosis infection: opportunities and challenges. Respirology. 2018;23(10):893–900. doi:10.1111/resp.13346
  • Li Y, Deng Y, He J. Monocyte-related gene biomarkers for latent and active tuberculosis. Bioengineered. 2021;12(2):10799–10811. doi:10.1080/21655979.2021.2003931
  • Pourakbari B, Mamishi S, Benvari S, Mahmoudi S. Comparison of the quantiFERON-TB gold plus and quantiFERON-TB gold in-tube interferon-γ release assays: A systematic review and meta-analysis. Adv Med Sci. 2019;64(2):437–443. doi:10.1016/j.advms.2019.09.001
  • Gong W, Wu X. Differential diagnosis of latent tuberculosis infection and active tuberculosis: A key to a successful tuberculosis control strategy. Front Microbiol. 2021;12:745592. doi:10.3389/fmicb.2021.745592
  • Perumal P, Abdullatif MB, Garlant HN, et al. Validation of differentially expressed immune biomarkers in latent and active tuberculosis by real-time PCR. Front Immunol. 2020;11:612564. doi:10.3389/fimmu.2020.612564
  • Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by mycobacterium tuberculosis. Cell Mol Immunol. 2020;17(9):901–913. doi:10.1038/s41423-020-0502-z
  • Ravesloot-Chávez MM, Van Dis E, Stanley SA. The innate immune response to mycobacterium tuberculosis infection. Ann Rev Immunol. 2021;39:611–637. doi:10.1146/annurev-immunol-093019-010426
  • McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis. 2016;74(7):ftw068. doi:10.1093/femspd/ftw068
  • Sia JK, Rengarajan J. Immunology of mycobacterium tuberculosis infections. Microbiology Spectrum. 2019;7(4). doi:10.1128/microbiolspec.GPP3-0022-2018
  • Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963–975. doi:10.1038/cmi.2017.88
  • Sia JK, Georgieva M, Rengarajan J. innate immune defenses in human tuberculosis: An overview of the interactions between mycobacterium tuberculosis and innate immune cells. J Immunol Res. 2015;2015:747543. doi:10.1155/2015/747543
  • Sallin MA, Kauffman KD, Riou C, et al. Host resistance to pulmonary mycobacterium tuberculosis infection requires CD153 expression. Nature Microbiology. 2018;3(11):1198–1205. doi:10.1038/s41564-018-0231-6
  • Dabla A, Liang YC, Rajabalee N, et al. TREM2 promotes immune evasion by mycobacterium tuberculosis in human macrophages. mBio. 2022;13(4):e0145622. doi:10.1128/mbio.01456-22
  • Leu JS, Chen ML, Chang SY, et al. SP110b controls host immunity and susceptibility to tuberculosis. Am J Respir Crit Care Med. 2017;195(3):369–382. doi:10.1164/rccm.201601-0103OC
  • Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20. doi:10.1128/CMR.00034-13
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–455. doi:10.1038/nature12034
  • Fraternale A, Brundu S, Magnani M. Polarization and repolarization of macrophages. J Clin Cell Immunol. 2015;6:2.
  • Ahmad F, Rani A, Alam A, et al. Macrophage: a cell with many faces and functions in tuberculosis. Front Immunol. 2022;13:747799. doi:10.3389/fimmu.2022.747799
  • Khan A, Singh VK, Hunter RL, Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukocyte Bio. 2019;106(2):275–282. doi:10.1002/JLB.MR0318-095RR
  • Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by mycobacterium tuberculosis. Immunol Rev. 2015;264(1):220–232. doi:10.1111/imr.12268
  • Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit. Cell. 2019;178(6):1344–1361.e1311. doi:10.1016/j.cell.2019.08.004
  • Zhang L, Jiang X, Pfau D, Ling Y, Nathan CF. Type I interferon signaling mediates mycobacterium tuberculosis-induced macrophage death. J Exp Med. 2021;1(2):218.
  • Erick TK, Brossay L. Phenotype and functions of conventional and non-conventional NK cells. Current Opinion Immuno. 2016;38:67–74. doi:10.1016/j.coi.2015.11.007
  • Li S, Wang D, Wei P, et al. Elevated natural killer cell-mediated cytotoxicity is associated with cavity formation in pulmonary tuberculosis patients. J Immunol Res. 2021;2021:7925903. doi:10.1155/2021/7925903
  • Cai Y, Dai Y, Wang Y, et al. Single-cell transcriptomics of blood reveals a natural killer cell subset depletion in tuberculosis. EBioMedicine. 2020;53:102686. doi:10.1016/j.ebiom.2020.102686
  • Chen Y, Graf L, Chen T, et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science. 2021;373(6557):918–922. doi:10.1126/science.abg5953
  • Spitaels J, Van Hoecke L, Roose K, Kochs G, Saelens X, Dermody TS. Mx1 in hematopoietic cells protects against thogoto virus infection. J Virol. 2019;93(15). doi:10.1128/JVI.00193-19
  • Jung HE, Oh JE, Lee HK. Cell-penetrating mx1 enhances anti-viral resistance against mucosal influenza viral infection. Viruses. 2019;11(2):109. doi:10.3390/v11020109
  • Yi F, Hu J, Zhu X, et al. Transcriptional profiling of human peripheral blood mononuclear cells stimulated by mycobacterium tuberculosis PPE57 identifies characteristic genes associated with type I interferon signaling. Front Cell Infect Microbiol. 2021;11:716809. doi:10.3389/fcimb.2021.716809
  • Zhang S, Chu C, Wu Z, et al. IFIH1 contributes to M1 macrophage polarization in ARDS. Front Immunol. 2021;11:580838. doi:10.3389/fimmu.2020.580838
  • Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity. 2012;36(4):515–528. doi:10.1016/j.immuni.2012.03.016
  • Ma Y, Zhang Y, Li R, Wang X, Wang A. Cutaneous tuberculosis in a patient with a STAT1 mutation. J Der Deutsch Dermatol Gesellsch. 2021;19(11):1647–1649.
  • Yi XH, Zhang B, Fu YR, Yi ZJ. STAT1 and its related molecules as potential biomarkers in Mycobacterium tuberculosis infection. J Cell & Mol Med. 2020;24(5):2866–2878. doi:10.1111/jcmm.14856
  • Yao K, Chen Q, Wu Y, Liu F, Chen X, Zhang Y. Unphosphorylated STAT1 represses apoptosis in macrophages during mycobacteriumtuberculosis infection. J Cell Sci. 2017;130(10):1740–1751. doi:10.1242/jcs.200659
  • Liang T, Chen J, Xu G, et al. STAT1 and CXCL10 involve in M1 macrophage polarization that may affect osteolysis and bone remodeling in extrapulmonary tuberculosis. Gene. 2022;809:146040. doi:10.1016/j.gene.2021.146040
  • Lee S, Zhang Y, Newhams M, et al. DDX58 is associated with susceptibility to severe influenza virus infection in children and adolescents. J Infect Dis. 2022;226(11):2030–2036.
  • Zhang YW, Lin Y, Yu HY, Tian RN, Li F. Characteristic genes in THP‑1 derived macrophages infected with mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods. IntJ Mol Med. 2019;44(4):1243–1254. doi:10.3892/ijmm.2019.4293
  • Cheng Y, Schorey JS. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J Exp Med. 2018;215(11):2919–2935. doi:10.1084/jem.20180508
  • Cheng Y, Schorey JS. Extracellular vesicles deliver mycobacterium RNA to promote host immunity and bacterial killing. EMBO Reports Mar. 2019;20(3):e46613.
  • Zhang Z, Mai Q, Yang L, et al. MicroRNA-31 mediated by interferon regulatory factor 7 signaling facilitates control of mycobacterium tuberculosis infection. Intl j med microbio. 2022;312(7):151569. doi:10.1016/j.ijmm.2022.151569
  • Cubillos-Angulo JM, Arriaga MB, Melo MGM, et al. Polymorphisms in interferon pathway genes and risk of mycobacterium tuberculosis infection in contacts of tuberculosis cases in Brazil. Int j Infect Dis. 2020;92:21–28. doi:10.1016/j.ijid.2019.12.013