47
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Role and Mechanism of Growth Differentiation Factor 15 in Chronic Kidney Disease

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2861-2871 | Received 23 Nov 2023, Accepted 25 Apr 2024, Published online: 09 May 2024

References

  • Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl. 2022;12(1):7–11. doi:10.1016/j.kisu.2021.11.003
  • Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney disease. Lancet. 2021;398:786–802.
  • Mrug M, Bloom MS, Seto C, et al. Genetic testing for chronic kidney diseases: clinical utility and barriers perceived by nephrologists. Kidney Med. 2021;3(6):1050–1056. doi:10.1016/j.xkme.2021.08.006
  • Jdiaa SS, Mansour R, El Alayli A, Gautam A, Thomas P, Mustafa RA. COVID-19 and chronic kidney disease: an updated overview of reviews. J Nephrol. 2022;35(1):69–85. doi:10.1007/s40620-021-01206-8
  • Bikbov B, Purcell CA, Levey AS. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–733. doi:10.1016/S0140-6736(20)30045-3
  • Irazabal MV, Torres VE. Reactive oxygen species and redox signaling in chronic kidney disease. Cells. 2020;9(6):1342. doi:10.3390/cells9061342
  • Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol. 2021;12:627837. doi:10.3389/fphys.2021.627837
  • Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol. 2003;14(suppl_3):S227–232. doi:10.1097/01.ASN.0000077407.90309.65
  • Mima A. Mitochondria-targeted drugs for diabetic kidney disease. Heliyon. 2022;8(2):e08878. doi:10.1016/j.heliyon.2022.e08878
  • Mima A. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets. J Diabetes Res. 2013;2013:248563. doi:10.1155/2013/248563
  • Mima A, Yasuzawa T, King GL, Ueshima S. Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio. 2018;8(4):664–670. doi:10.1002/2211-5463.12400
  • Graterol Torres F, Molina M, Soler-Majoral J, et al. Evolving concepts on inflammatory biomarkers and malnutrition in chronic kidney disease. Nutrients. 2022;15(1):14. doi:10.3390/nu15010014
  • Valdivielso JM, Rodríguez-Puyol D, Pascual J, et al. Atherosclerosis in chronic kidney disease: more, less, or just different? Arterioscler. Thromb Vasc Biol. 2019;39(10):1938–1966. doi:10.1161/ATVBAHA.119.312705
  • Wang XR, Zhang JJ, Xu XX, Wu YG. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail. 2019;41(1):244–256. doi:10.1080/0886022X.2019.1595646
  • van de Wouw J, Broekhuizen M, Sorop O, et al. Chronic kidney disease as a risk factor for heart failure with preserved ejection fraction: a focus on microcirculatory factors and therapeutic targets. Front Physiol. 2019;10:1108. doi:10.3389/fphys.2019.01108
  • Hanna RM, Streja E, Kalantar-Zadeh K. Burden of anemia in chronic kidney disease: beyond erythropoietin. Adv Ther. 2021;38(1):52–75. doi:10.1007/s12325-020-01524-6
  • Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, et al. Chronic kidney disease-mineral and bone disorders: pathogenesis and management. Calcif Tissue Int. 2021;108(4):410–422. doi:10.1007/s00223-020-00777-1
  • Ghassib I, Chen Z, Zhu J, Wang HL. Use of IL-1 β, IL-6, TNF-α, and MMP-8 biomarkers to distinguish peri-implant diseases: a systematic review and meta-analysis. Clin Implant Dent Relat Res. 2019;21(1):190–207. doi:10.1111/cid.12694
  • Hammad AM, Ibrahim YA, Khdair SI, et al. Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α. Behav Brain Res. 2021;414:113475. doi:10.1016/j.bbr.2021.113475
  • Bermúdez B, López S, Pacheco YM, et al. Influence of postprandial triglyceride-rich lipoproteins on lipid-mediated gene expression in smooth muscle cells of the human coronary artery. Cardiovasc Res. 2008;79(2):294–303. doi:10.1093/cvr/cvn082
  • Ding Q, Mracek T, Gonzalez-Muniesa P, et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology. 2009;150(4):1688–1696. doi:10.1210/en.2008-0952
  • Yokoyama-Kobayashi M, Saeki M, Sekine S, Kato S. Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta. J Biochem. 1997;122(3):622–626. doi:10.1093/oxfordjournals.jbchem.a021798
  • Koopmann J, Buckhaults P, Brown DA, et al. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res. 2004;10(7):2386–2392. doi:10.1158/1078-0432.CCR-03-0165
  • Tan M, Wang Y, Guan K, Sun Y. PTGF-β, a type β transforming growth factor (TGF-β) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-β signaling pathway. Proc Natl Acad Sci U S A. 2000;97(1):109–114. doi:10.1073/pnas.97.1.109
  • Fang L, Li F, Gu C. GDF-15: a multifunctional modulator and potential therapeutic target in cancer. Curr Pharm Des. 2019;25(6):654–662. doi:10.2174/1381612825666190402101143
  • Xiao QA, He Q, Zeng J, Xia X. GDF-15, a future therapeutic target of glucolipid metabolic disorders and cardiovascular disease. Biomed Pharmacother. 2022;146:112582. doi:10.1016/j.biopha.2021.112582
  • Ouyang J, Isnard S, Lin J, et al. GDF-15 as a weight watcher for diabetic and non-diabetic people treated with metformin. Front Endocrinol. 2020;11:581839. doi:10.3389/fendo.2020.581839
  • Benes J, Kotrc M, Wohlfahrt P, et al. The Role of GDF-15 in heart failure patients with chronic kidney disease. Can J Cardiol. 2019;35(4):462–470. doi:10.1016/j.cjca.2018.12.027
  • Tuegel C, Katz R, Alam M, et al. GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD. Am J Kidney Dis. 2018;72(4):519–528. doi:10.1053/j.ajkd.2018.03.025
  • Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res. 2015;2015:490842. doi:10.1155/2015/490842
  • Zhao Z, Zhang J, Yin L, et al. Upregulated GDF-15 expression facilitates pancreatic ductal adenocarcinoma progression through orphan receptor GFRAL. Aging. 2020;12(22):22564–22581. doi:10.18632/aging.103830
  • Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in pulmonary and critical care medicine. Am J Respir Cell Mol Biol. 2019;60(6):621–628. doi:10.1165/rcmb.2018-0379TR
  • Desmedt S, Desmedt V, De Vos L, Delanghe JR, Speeckaert R, Speeckaert MM. Growth differentiation factor 15: a novel biomarker with high clinical potential. Crit Rev Clin Lab Sci. 2019;56(5):333–350. doi:10.1080/10408363.2019.1615034
  • Sithiravel C, Røysland R, Alaour B, et al. Biological variation, reference change values and index of individuality of GDF-15. Clin Chem Lab Med. 2022;60(4):593–596. doi:10.1515/cclm-2021-0769
  • Wischhusen J, Melero I, Fridman WH. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol. 2020;11:951. doi:10.3389/fimmu.2020.00951
  • Kim YI, Shin HW, Chun YS, Park JW. CST3 and GDF15 ameliorate renal fibrosis by inhibiting fibroblast growth and activation. Biochem Biophys Res Commun. 2018;500(2):288–295. doi:10.1016/j.bbrc.2018.04.061
  • Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping with stress: the mitokine GDF-15 as a biomarker of COVID-19 severity. Front Immunol. 2022;13:820350. doi:10.3389/fimmu.2022.820350
  • Mastrobattista E, Lenze EJ, Reynolds CF, et al. Late-life depression is associated with increased levels of GDF-15, a pro-aging mitokine. Am J Geriatr Psychiatry. 2023;31(1):1–9. doi:10.1016/j.jagp.2022.08.003
  • Yang M, Darwish T, Larraufie P, et al. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci Rep. 2021;11(1):2529. doi:10.1038/s41598-021-81349-7
  • Lodi RS, Yu B, Xia L, Liu F. Roles and regulation of growth differentiation factor-15 in the immune and tumor microenvironment. Hum Immunol. 2021;82(12):937–944. doi:10.1016/j.humimm.2021.06.007
  • Schwarz A, Kinscherf R, Bonaterra GA. Role of the stress- and inflammation-induced cytokine GDF-15 in cardiovascular diseases: from basic research to clinical relevance. RCM. 2023;2:24.
  • Roth P, Junker M, Tritschler I, et al. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res. 2010;16(15):3851–3859. doi:10.1158/1078-0432.CCR-10-0705
  • Chen J, Luo F, Fang Z, Zhang W. GDF-15 levels and atherosclerosis. Int J Cardiol. 2018;257:36. doi:10.1016/j.ijcard.2017.10.037
  • Blanco AM, Bertucci JI, Velasco C, Unniappan S. Growth differentiation factor 15 (GDF-15) is a novel orexigen in fish. Mol Cell Endocrinol. 2020;505:110720. doi:10.1016/j.mce.2020.110720
  • Molfino A, Amabile MI, Imbimbo G, et al. Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients. Cancers. 2020;13(1):13. doi:10.3390/cancers13010013
  • Valenzuela-Vallejo L, Chrysafi P, Bello-Ramos J, Bsata S, Mantzoros CS. Circulating total and intact GDF-15 levels are not altered in response to weight loss induced by liraglutide or lorcaserin treatment in humans with obesity. Metabolism. 2022;133:155237. doi:10.1016/j.metabol.2022.155237
  • Merchant RA, Chan YH, Duque G, Bencivenga L. GDF-15 is associated with poor physical function in prefrail older adults with diabetes. J Diabetes Res. 2023;2023:2519128. doi:10.1155/2023/2519128
  • Verhamme FM, Seys LJM, De Smet EG, et al. Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal Immunol. 2017;10(6):1400–1411. doi:10.1038/mi.2017.3
  • Mielcarska S, Stopińska K, Dawidowicz M, et al. GDF-15 level correlates with CMKLR1 and VEGF-A in tumor-free margin in colorectal cancer. Curr Med Sci. 2021;41(3):522–528. doi:10.1007/s11596-021-2335-0
  • Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, et al. GDF-15: diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol. 2021;236(8):5564–5581. doi:10.1002/jcp.30289
  • Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother. 2020;126:110086. doi:10.1016/j.biopha.2020.110086
  • Haake M, Haack B, Schäfer T, et al. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun. 2023;14(1):4253. doi:10.1038/s41467-023-39817-3
  • Preusch MR, Baeuerle M, Albrecht C, et al. GDF-15 protects from macrophage accumulation in a mousemodel of advanced atherosclerosis. Eur J Med Res. 2013;18(1):19. doi:10.1186/2047-783X-18-19
  • Maimaiti Y, Cheng H, Guo Z, Yu X, Tuohuti A, Li G. Correlation between serum GDF-15 level and pulmonary vascular morphological changes and prognosis in patients with pulmonary arterial hypertension. Front Cardiovasc Med. 2023;10:1085122. doi:10.3389/fcvm.2023.1085122
  • May BM, Pimentel M, Zimerman LI, Rohde LE. GDF-15 as a Biomarker in Cardiovascular Disease. Arq Bras Cardiol. 2021;116(3):494–500. doi:10.36660/abc.20200426
  • Bonaterra GA, Struck N, Zuegel S, et al. Characterization of atherosclerotic plaques in blood vessels with low oxygenated blood and blood pressure (Pulmonary trunk): role of growth differentiation factor-15 (GDF-15). BMC Cardiovasc Disord. 2021;21(1):601. doi:10.1186/s12872-021-02420-9
  • Bettencourt P, Ferreira-Coimbra J, Rodrigues P, et al. Towards a multi-marker prognostic strategy in acute heart failure: a role for GDF-15. ESC Heart Fail. 2018;5(6):1017–1022. doi:10.1002/ehf2.12301
  • Braicu C, Buse M, Busuioc C, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers. 2019;12(1):11. doi:10.3390/cancers12010011
  • Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;17(1):21. doi:10.7150/ijms.39074
  • Sun Y, Lin J, Zhao T, Zhang L. GDF-15 promotes proliferation of vascular smooth muscle cells through MAPK-activated protein kinase pathways. Int J Clin Exp Med. 2019;12:10093–10100.
  • Wang SF, Chen S, Tseng LM, Lee HC. Role of the mitochondrial stress response in human cancer progression. Exp Biol Med. 2020;245(10):861–878. doi:10.1177/1535370220920558
  • Dong G, Zheng QD, Ma M, et al. Angiogenesis enhanced by treatment damage to hepatocellular carcinoma through the release of GDF15. Cancer Med. 2018;7(3):820–830. doi:10.1002/cam4.1330
  • Decean HP, Brie IC, Tatomir CB, Perde-Schrepler M, Fischer-Fodor E, Virag P. Targeting MAPK (p38, ERK, JNK) and inflammatory CK (GDF-15, GM-CSF) in UVB-activated human skin cells with Vitis vinifera seed extract. J Environ Pathol Toxicol Oncol. 2018;37(3):261–272. doi:10.1615/JEnvironPatholToxicolOncol.2018027009
  • Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: erythropoiesis and beyond. J Cell Physiol. 2019;234(3):2373–2385. doi:10.1002/jcp.27262
  • Very N, Vercoutter-Edouart AS, Lefebvre T, Hardivillé S, El Yazidi-Belkoura I. Cross-dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR axis in human chronic diseases. Front Endocrinol. 2018;9:602. doi:10.3389/fendo.2018.00602
  • Nur Husna SM, Tan HT, Mohamud R, Dyhl-Polk A, Wong KK. Inhibitors targeting CDK4/6, PARP and PI3K in breast cancer: a review. Ther Adv Med Oncol. 2018;10:1758835918808509. doi:10.1177/1758835918808509
  • Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y, Roles of PI3K/AKT/GSK3 Pathway Involved in Psychiatric Illnesses. Diseases. 2019;1:7. doi:10.3390/diseases7010022
  • Li L, Wang F, Zhang J, et al. Typical phthalic acid esters induce apoptosis by regulating the PI3K/Akt/Bcl-2 signaling pathway in rat insulinoma cells. Ecotoxicol Environ Saf. 2021;208:111461. doi:10.1016/j.ecoenv.2020.111461
  • Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–132. doi:10.1016/j.semcancer.2019.07.009
  • Arkoumani M, Papadopoulou-Marketou N, Nicolaides NC, Kanaka-Gantenbein C, Tentolouris N, Papassotiriou I. The clinical impact of growth differentiation factor-15 in heart disease: a 2019 update. Crit Rev Clin Lab Sci. 2020;57(2):114–125. doi:10.1080/10408363.2019.1678565
  • Xiangrui Q, Junhui L, Rui H, Xiaozhen Z. GDF-15 in plasma and circulating mononuclear cells and NT-proBNP for diagnosis of chronic heart failure and predicting cardiovascular disease events. Nan Fang Yi Ke Da Xue Xue Bao. 2019;39:1273–1279. doi:10.12122/j.issn.1673-4254.2019.11.02
  • Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19(1):145. doi:10.1186/s12943-020-01258-7
  • Wang HQ, Man QW, Huo FY, et al. STAT3 pathway in cancers: past, present, and future. MedComm. 2022;3(2):e124. doi:10.1002/mco2.124
  • Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition. Cells. 2020;9(1):217. doi:10.3390/cells9010217
  • Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27(1):136–150.e135. doi:10.1016/j.cmet.2017.11.001
  • Park JY, Yoo KD, Shin SJ, Kim KS, Kim YS, Yang SH. FP260Inhibition of CXCR3 expression through blockade of STAT3 alpha signaling down-regulate inflammation of renal ischemia-reperfusion injury. Nephrol Dial Transplant. 2019;34(Supplement_1). doi:10.1093/ndt/gfz106.FP260
  • Blanchette-Farra N, Kita D, Konstorum A, et al. Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer. Oncogene. 2018;37(29):4013–4032. doi:10.1038/s41388-018-0243-y
  • Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–588. doi:10.1038/nm.2354
  • Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM, Milbrandt J. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development. 2001;128(20):3963–3974. doi:10.1242/dev.128.20.3963
  • Enomoto H, Heuckeroth RO, Golden JP, Johnson EM, Milbrandt J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development. 2000;127(22):4877–4889. doi:10.1242/dev.127.22.4877
  • Iglesias P, Silvestre RA, Díez JJ. Growth differentiation factor 15 (GDF-15) in endocrinology. Endocrine. 2023;81(3):419–431. doi:10.1007/s12020-023-03377-9
  • Bou Antoun N, Chioni AM. Dysregulated signalling pathways driving anticancer drug resistance. Int J Mol Sci. 2023;25(1):24. doi:10.3390/ijms25010024
  • Muniyan S, Pothuraju R, Seshacharyulu P, Batra SK. Macrophage inhibitory cytokine-1 in cancer: beyond the cellular phenotype. Cancer Lett. 2022;536:215664. doi:10.1016/j.canlet.2022.215664
  • Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circul Res. 2006;98(3):342–350. doi:10.1161/01.RES.0000202804.84885.d0
  • Heduschke A, Ackermann K, Wilhelm B, et al. GDF-15 deficiency reduces autophagic activity in human macrophages in vitro and decreases p62-accumulation in atherosclerotic lesions in mice. Cells. 2021;11(1):10. doi:10.3390/cells11010010
  • Ranjbaran R, Abbasi M, Rahimian E, et al. GDF-15 negatively regulates excess erythropoiesis and its overexpression is involved in erythroid hyperplasia. Exp Cell Res. 2020;397(2):112346. doi:10.1016/j.yexcr.2020.112346
  • Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi:10.1038/s12276-020-0384-2
  • Nakamura H, Takada K. Reactive oxygen species in cancer: current findings and future directions. Cancer Sci. 2021;112:3945–3952.
  • Madreiter-Sokolowski CT, Thomas C, Ristow M. Interrelation between ROS and Ca(2+) in aging and age-related diseases. Redox Biol. 2020;36:101678. doi:10.1016/j.redox.2020.101678
  • Hajam YA, Rani R, Ganie SY, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;12(1):11. doi:10.3390/cells12010011
  • Guo J, Huang X, Dou L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022;7(1):391. doi:10.1038/s41392-022-01251-0
  • Ma Y, Zheng L, Wang Y, Gao Y, Xu Y. Arachidonic acid in follicular fluid of PCOS induces oxidative stress in a human ovarian granulosa tumor cell line (KGN) and Upregulates GDF15 expression as a response. Front Endocrinol. 2022;13:865748. doi:10.3389/fendo.2022.865748
  • Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother. 2020;131:110660. doi:10.1016/j.biopha.2020.110660
  • Jang DI, Lee AH, Shin HY, et al. The Role of Tumor Necrosis Factor Alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021;23(1):22. doi:10.3390/ijms23010022
  • Piek A, Du W, de Boer RA, Silljé HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci. 2018;55(4):246–263. doi:10.1080/10408363.2018.1460576
  • Zhang BC, Zhang J, Sun L. In-depth profiling and analysis of host and viral microRNAs in Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus reveal involvement of microRNAs in host-virus interaction in teleost fish. BMC Genomics. 2014;15(1):878. doi:10.1186/1471-2164-15-878
  • Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Growth differentiation factor 15 (GDF-15) in kidney diseases. Adv Clin Chem. 2023;114:1–46. doi:10.1016/bs.acc.2023.02.003
  • Zhou Z, Liu H, Ju H, Chen H, Jin H, Sun M. Circulating GDF-15 in relation to the progression and prognosis of chronic kidney disease: a systematic review and dose-response meta-analysis. Eur J Int Med. 2023;110:77–85. doi:10.1016/j.ejim.2023.01.026
  • Moschovaki-Filippidou F, Steiger S, Lorenz G, et al. Growth differentiation factor 15 ameliorates anti-glomerular basement membrane glomerulonephritis in mice. Int J Mol Sci. 2020;22(1):21. doi:10.3390/ijms22010021
  • Hamon SM, Griffin TP, Islam MN, Wall D, Griffin MD, O’Shea PM. Defining reference intervals for a serum growth differentiation factor-15 (GDF-15) assay in a Caucasian population and its potential utility in diabetic kidney disease (DKD). Clin Chem Lab Med. 2019;57(4):510–520. doi:10.1515/cclm-2018-0534
  • Kageyama K, Iwasaki Y, Watanuki Y, et al. Growth differentiation factor-15 modulates adrenocorticotropic hormone synthesis in murine AtT-20 corticotroph cells. Peptides. 2022;155:170841. doi:10.1016/j.peptides.2022.170841
  • van Haalen H, Jackson J, Spinowitz B, Milligan G, Moon R. Impact of chronic kidney disease and anemia on health-related quality of life and work productivity: analysis of multinational real-world data. BMC Nephrol. 2020;21(1):88. doi:10.1186/s12882-020-01746-4
  • Perez-Gomez MV, Pizarro-Sanchez S, Gracia-Iguacel C, et al. Urinary Growth Differentiation Factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease. J Nephrol. 2021;34(6):1819–1832. doi:10.1007/s40620-021-01020-2
  • Carlsson AC, Nowak C, Lind L, et al. Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: a proteomics approach. Ups J Med Sci. 2020;125(1):37–43. doi:10.1080/03009734.2019.1696430
  • Barma M, Khan F, Price RJG, et al. Association between GDF-15 levels and changes in vascular and physical function in older patients with hypertension. Aging Clin Exp Res. 2017;29:1055–1059.
  • Mima A, Kitada M, Geraldes P, et al. Glomerular VEGF resistance induced by PKCδ/SHP-1 activation and contribution to diabetic nephropathy. FASEB j. 2012;26(7):2963–2974. doi:10.1096/fj.11-202994
  • Mima A, Nomura A, Fujii T. Current findings on the efficacy of incretin-based drugs for diabetic kidney disease: a narrative review. Biomed Pharmacothe. 2023;165:115032. doi:10.1016/j.biopha.2023.115032
  • Mima A, Yasuzawa T, Nakamura T, Ueshima S. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Sci Rep. 2020;10(1):5775. doi:10.1038/s41598-020-62579-7
  • Lukaszyk E, Lukaszyk M, Koc-Zorawska E, Bodzenta-Lukaszyk A, Malyszko J. GDF-15, iron, and inflammation in early chronic kidney disease among elderly patients. Int Urol Nephrol. 2016;48(6):839–844. doi:10.1007/s11255-016-1278-z
  • Nalado AM, Olorunfemi G, Dix-Peek T, et al. Hepcidin and GDF-15 are potential biomarkers of iron deficiency anaemia in chronic kidney disease patients in South Africa. BMC Nephrol. 2020;21(1):415. doi:10.1186/s12882-020-02046-7
  • Laucyte-Cibulskiene A, Ward LJ, Ebert T, et al. Role of GDF-15, YKL-40 and MMP 9 in patients with end-stage kidney disease: focus on sex-specific associations with vascular outcomes and all-cause mortality. Biol Sex Differ. 2021;12(1):50. doi:10.1186/s13293-021-00393-0
  • Lewis GA, Rosala-Hallas A, Dodd S, et al. Characteristics associated with growth differentiation factor 15 in heart failure with preserved ejection fraction and the impact of pirfenidone. J Am Heart Assoc. 2022;11(14):e024668. doi:10.1161/JAHA.121.024668
  • Bansal N, Zelnick L, Go A, et al. Cardiac biomarkers and risk of incident heart failure in chronic kidney disease: the CRIC (Chronic Renal Insufficiency Cohort) study. J Am Heart Assoc. 2019;8(21):e012336. doi:10.1161/JAHA.119.012336
  • Natale P, Strippoli G. Sun-243 antiplatelet agents for chronic kidney disease: an updated Cochrane review. Kidney Int Rep. 2020;5(3):S299–S300. doi:10.1016/j.ekir.2020.02.778
  • Yilmaz H, Cakmak M, Darcin T, et al. Can serum Gdf-15 be associated with functional iron deficiency in hemodialysis Patients? Indian J Hematol Blood Transfus. 2016;32(2):221–227. doi:10.1007/s12288-015-0551-0
  • Shao Y, Wang H, Liu C, et al. Transforming growth factor 15 increased in severe aplastic anemia patients. Hematology. 2017;22(9):548–553. doi:10.1080/10245332.2017.1311462
  • Schechter A, Gafter-Gvili A, Shepshelovich D, et al. Post renal transplant anemia: severity, causes and their association with graft and patient survival. BMC Nephrol. 2019;20(1):51. doi:10.1186/s12882-019-1244-y
  • Thorsteinsdottir H, Salvador CL, Mjøen G, et al. Growth differentiation factor 15 in children with chronic kidney disease and after renal transplantation. Dis. Markers. 2020;2020:6162892. doi:10.1155/2020/6162892
  • de Cos Gomez M, Benito Hernandez A, Garcia Unzueta MT, et al. Growth differentiation factor 15: a biomarker with high clinical potential in the evaluation of kidney transplant candidates. J Clin Med. 2020;9(12):4112. doi:10.3390/jcm9124112