147
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Gclc as a Marker for Injured Distal Nephron in Ischemia-Reperfusion Induced Acute Kidney Injury

, , , ORCID Icon, &
Pages 527-540 | Received 23 Nov 2023, Accepted 18 Jan 2024, Published online: 31 Jan 2024

References

  • Rossaint J, Zarbock A. Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol. Nefrol. 2016;68(1):49–57.
  • Vijayan A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat Rev Nephrol. 2021;17(2):87–88. doi:10.1038/s41581-020-00390-3
  • Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–448. doi:10.1038/ki.2011.379
  • Joliat GR, Labgaa I, Demartines N, Halkic N. Acute kidney injury after liver surgery: does postoperative urine output correlate with postoperative serum creatinine? HPB (Oxford). 2020;22(1):144–150. doi:10.1016/j.hpb.2019.06.016
  • Finco DR, Duncan JR. Evaluation of blood urea nitrogen and serum creatinine concentrations as indicators of renal dysfunction: a study of 111 cases and a review of related literature. J. Am. Vet. Med. Assoc. 1976;168(7):593–601.
  • Moledina DG, Parikh CR. Phenotyping of acute kidney injury: beyond serum creatinine. Semin. Nephrol. 2018;38(1):3–11. doi:10.1016/j.semnephrol.2017.09.002
  • Gumbert SD, Kork F, Jackson ML, et al. Perioperative acute kidney injury. Anesthesiology. 2020;132(1):180–204. doi:10.1097/ALN.0000000000002968
  • Rudman-Melnick V, Adam M, Potter A, et al. Single-cell profiling of aki in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk. J. Am. Soc. Nephrol. 2020;31(12):2793–2814. doi:10.1681/ASN.2020010052
  • Li H, Dixon EE, Wu H, Humphreys BD. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 2022;34(12):1977–1998 e1979. doi:10.1016/j.cmet.2022.09.026
  • Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2:1303–1353. doi:10.1002/cphy.c110041
  • Ran S, Gao X, Ma M, et al. NaAsO(2) decreases GSH synthesis by inhibiting GCLC and induces apoptosis through Hela cell mitochondrial damage, mediating the activation of the NF-kappaB/miR-21 signaling pathway. Ecotoxicol. Environ. Saf. 2022;234:113380. doi:10.1016/j.ecoenv.2022.113380
  • You GR, Chang JT, Li Y-L, et al. MYH9 facilitates cell invasion and radioresistance in head and neck cancer via modulation of cellular ROS levels by activating the MAPK-Nrf2-GCLC pathway. Cells. 2022;11(18):2855. doi:10.3390/cells11182855
  • Hseu YC, Vudhya Gowrisankar Y, Wang L-W, et al. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated alpha-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol. 2021;44:102007. doi:10.1016/j.redox.2021.102007
  • Kajarabille N, Latunde-Dada GO. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int. J. Mol. Sci. 2019;20(19):4968. doi:10.3390/ijms20194968
  • Luo L, Zhang Z, Weng Y, Zeng J. Ferroptosis-related gene GCLC is a novel prognostic molecular and correlates with immune infiltrates in lung Adenocarcinoma. Cells. 2022;11(21):3371. doi:10.3390/cells11213371
  • Liu C, Wu X, Bing X, et al. H1N1 influenza virus infection through NRF2-KEAP1-GCLC pathway induces ferroptosis in nasal mucosal epithelial cells. Free Radic. Biol. Med. 2023;204:226–242. doi:10.1016/j.freeradbiomed.2023.05.004
  • Davidson EA. Endocrine pancreas-specific Gclc gene deletion causes a severe diabetes phenotype. bioRxiv. 2023. doi:10.1101/2023.06.13.544855
  • Feng W, Rosca M, Fan Y, et al. Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Hum. Mol. Genet. 2017;26(7):1376–1390. doi:10.1093/hmg/ddx040
  • Zhang Z, Kuang Y, Ma K, et al. Gclc overexpression inhibits apoptosis of bone marrow mesenchymal stem cells through the PI3K/AKT/Foxo1 pathway to alleviate inflammation in acute lung injury. Int. Immunopharmacol. 2022;110:109017. doi:10.1016/j.intimp.2022.109017
  • Chen Z, Li Y, Yuan Y, et al. Single-cell sequencing reveals homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced AKI. Cell Death Dis. 2023;14(5):318. doi:10.1038/s41419-023-05830-z
  • Wu H, Gonzalez Villalobos R, Yao X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab. 2022;34(7):1064–1078.e6. doi:10.1016/j.cmet.2022.05.010
  • Wu J, Sun Z, Yang S, et al. Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice. Mol. Ther. 2022;30(4):1741–1753. doi:10.1016/j.ymthe.2021.10.013
  • Guo X, Xu L, Velazquez H, et al. Kidney-targeted renalase agonist prevents cisplatin-induced chronic kidney disease by inhibiting regulated necrosis and inflammation. J. Am. Soc. Nephrol. 2022;33(2):342–356. doi:10.1681/ASN.2021040439
  • Trepiccione F, Soukaseum C, Iervolino A, et al. A fate-mapping approach reveals the composite origin of the connecting tubule and alerts on “single-cell”-specific KO model of the distal nephron. Am. J. Physiol. Renal Physiol. 2016;311(5):F901–F906. doi:10.1152/ajprenal.00286.2016
  • Chen L, Chou CL, Knepper MA. Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron. J. Am. Soc. Nephrol. 2021;32(4):886–896. doi:10.1681/ASN.2020101407
  • Rudman-Melnick V. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Res Sq. 2023. doi:10.21203/rs.3.rs-2880248/v1
  • Wu Y, Zhao Y, Yang HZ, Wang YJ, Chen Y. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci. Rep. 2021;41(2). doi:10.1042/BSR20202924
  • Tsai CF, Chen G-W, Chen Y-C, et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients. 2021;14(1):67. doi:10.3390/nu14010067
  • Li J, Wang T, Liu P, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021;12(9):3898–3918. doi:10.1039/d0fo02736g
  • Chen X, Xue H, Fang W, et al. Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity. Redox Biol. 2019;21:101068. doi:10.1016/j.redox.2018.101068
  • Lu W, Chen Z, Xu H, et al. Decreased ZMIZ1 suppresses melanogenesis in vitiligo by regulating mTOR/AKT/GSK-3beta-mediated glucose uptake. In Vitro Cell. Dev. Biol. Anim. 2023. doi:10.1007/s11626-023-00837-4
  • Cao Y. BHLHE40 inhibits ferroptosis in pancreatic cancer cells via upregulating SREBF1. Adv Sci (Weinh). 2023; e2306298. doi:10.1002/advs.202306298
  • Pang X, Zhang J, He X, et al. SPP1 promotes enzalutamide resistance and epithelial-mesenchymal-transition activation in castration-resistant prostate cancer via PI3K/AKT and ERK1/2 pathways. Oxid Med Cell Longev. 2021;2021:5806602. doi:10.1155/2021/5806602
  • Zhao K, Ma Z, Zhang W. Comprehensive analysis to identify SPP1 as a prognostic biomarker in cervical cancer. Front Genet. 2021;12:732822. doi:10.3389/fgene.2021.732822
  • Tsai YC. Single-cell transcriptomic profiles in the pathophysiology within the microenvironment of early diabetic kidney disease. Cell Death Dis. 2023;14(7):442. doi:10.1038/s41419-023-05947-1
  • Liu T. Novel synergistic mechanism of 11-keto-beta-boswellic acid and Z-Guggulsterone on ischemic stroke revealed by single-cell transcriptomics. Pharmacol. Res. 2023;193:106803. doi:10.1016/j.phrs.2023.106803
  • Zhang Y, Zhao Y, Zhang J, et al. Quantitative proteomics reveals neuroprotective mechanism of ginkgolide b in abeta(1–42)-induced n2a neuroblastoma cells. J. Integr. Neurosci. 2023;22(33):33. doi:10.31083/j.jin2202033
  • Kong W, Fu J, Liu N, et al. Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction. Nephrol. Dial. Transplant. 2018;33(5):771–783. doi:10.1093/ndt/gfx299
  • Park EJ, Dusabimana T, Je J, et al. Honokiol protects the kidney from renal ischemia and reperfusion injury by upregulating the glutathione biosynthetic enzymes. Biomedicines. 2020;8(9):352. doi:10.3390/biomedicines8090352
  • Zhang C, Li H, Qin L, et al. Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazine-induced nephrotoxicity in quail (Coturnix C. coturnix). Environ. Pollut. 2019;253:889–898. doi:10.1016/j.envpol.2019.07.058