26
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Chemokine CCL19 and Its Receptors CCR7 and CCRL1 in Chronic Rhinosinusitis

, , ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 2991-3002 | Received 04 Jan 2024, Accepted 07 May 2024, Published online: 15 May 2024

References

  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–621. doi:10.1056/nejmra052723
  • Peterson S, JA P, DR N, et al. Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2012;129(1):119–127.e9.
  • König K, Klemens C, Haack M, et al. Cytokine patterns in nasal secretion of non-atopic patients distinguish between chronic rhinosinusitis with or without nasal polyps. Allergy Asthma Clin Immunol. 2016;12(1). doi:10.1186/s13223-016-0123-3
  • Olze H, Forster U, Zuberbier T, Morawietz L, Luger E. Eosinophilic nasal polyps are a rich source of eotaxin, eotaxin-2 and eotaxin-3. Rhinology. 2006;44(2):145.
  • Wright ED, Frenkiel S, Ghaffar O, Al-Ghamdi K. Monocyte chemotactic protein expression in allergy and non-allergy-associated chronic sinusitis. J Otolaryngol. 1998;27(5):281.
  • Antonino M, Nicolò M, Jerome Renee L, et al. Single‐nucleotide polymorphism in chronic rhinosinusitis: a systematic review. Clin Otolaryngol. 2022;47(1):14–23. doi:10.1111/coa.13870
  • Forster R, Schubel A, Breitfeld D, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell. 1999;99(1):23–33. doi:10.1016/s0092-8674(00)80059-8
  • Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol. 2005;6(9):895–901. doi:10.1038/ni1240
  • Reif K, Ekland EH, Ohl L, et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature. 2002;416(6876):94–99. doi:10.1038/416094a
  • Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol. 2000;18:593–620. doi:10.1146/annurev.immunol.18.1.593
  • Yan Y, Chen R, Wang X, et al. CCL19 and CCR7 expression, signaling pathways, and adjuvant functions in viral infection and prevention. Front Cell Dev Biol. 2019;7:212. doi:10.3389/fcell.2019.00212
  • Marsland BJ, Battig P, Bauer M, et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity. 2005;22(4):493–505. doi:10.1016/j.immuni.2005.02.010
  • Takamura K, Fukuyama S, Nagatake T, et al. Regulatory role of lymphoid chemokine CCL19 and CCL21 in the control of allergic rhinitis. J Immunol. 2007;179(9):5897–5906. doi:10.4049/jimmunol.179.9.5897
  • Nayak N, Pati A, Pavani Y, Sahu S, Ranjan S, Panda AK. CCL19 (rs3136658) and CCL21 (rs2812377) variants are associated with susceptibility and related mortality of SARS-CoV-2 Infection. J Infect Dis. 2023;228(1):101–102. doi:10.1093/infdis/jiad032
  • Tveita A, Murphy SL, Holter JC, et al. High circulating levels of the homeostatic chemokines CCL19 and CCL21 predict mortality and disease severity in COVID-19. J Infect Dis. 2022;226(12):2150–2160. doi:10.1093/infdis/jiac313
  • Ellingsen T, Hansen I, Thorsen J, et al. Upregulated baseline plasma CCL19 and CCR7 cell-surface expression on monocytes in early rheumatoid arthritis normalized during treatment and CCL19 correlated with radiographic progression. Scand J Rheumatol. 2014;43(2):91–100. doi:10.3109/03009742.2013.803149
  • Damas JK, Smith C, Oie E, et al. Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: possible pathogenic role in plaque destabilization. Arterioscler Thromb Vasc Biol. 2007;27(3):614–620. doi:10.1161/01.ATV.0000255581.38523.7c
  • Pickens SR, Chamberlain ND, Volin MV, Pope RM, Mandelin AM 2nd, Shahrara S. Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis Rheum. 2011;63(4):914–922. doi:10.1002/art.30232
  • Bose F, Petti L, Diani M, et al. Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am J Pathol. 2013;183(2):413–421. doi:10.1016/j.ajpath.2013.04.021
  • Comerford I, Milasta S, Morrow V, Milligan G, Nibbs R. The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro. Eur J Immunol. 2006;36(7):1904–1916. doi:10.1002/eji.200535716
  • Zou Y, Wang Y, Wang SB, et al. Characteristic expression and significance of CCL19 in different tissue types in chronic rhinosinusitis. Exp Ther Med. 2016;11(1):140–146. doi:10.3892/etm.2015.2897
  • Ocampo CJ, Norton J. Elevated Expression of mRNA for CCL2, CCL19, CCR7 and CXCR3 in Chronic Rhinosinusitis with Nasal Polyposis. J Allergy Clin Immunol. 2012;2012:1.
  • TG ZW, Lv C, Long J, Cong L, Han Y. Matrix metalloproteinase-9 is up-regulated by CCL19/CCR7 interaction via PI3K/Akt pathway and is involved in CCL19-driven BMSCs migration - PubMed. Biochem Biophys Res Commun. 2014;451(2). doi:10.1016/j.bbrc.2014.07.112
  • Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol Head Neck Surg. 2015;152(2 Suppl):S1–S39. doi:10.1177/0194599815572097
  • Lund VJ, Mackay IS. Staging in rhinosinusitis. Rhinology. 1993;31(4):183–184.
  • Lund VJ, Kennedy DW. Staging for rhinosinusitis. Otolaryngol Head Neck Surg. 1997;117(3):S35–40. doi:10.1016/S0194-59989770005-6
  • Benninger MS, Senior BA. The development of the Rhinosinusitis Disability Index. Arch Otolaryngol Head Neck Surg. 1997;123(11):1175–1179. doi:10.1001/archotol.1997.01900110025004
  • Hopkins C, Gillett S, Slack R, Lund VJ, Browne JP. Psychometric validity of the 22-item Sinonasal Outcome Test. Clin Otolaryngol. 2009;34(5):447–454. doi:10.1111/j.1749-4486.2009.01995.x
  • Orb Q, Pulsipher A, Smith KA, Ashby S, Alt JA. Correlation between systemic inflammatory response and quality of life in patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2019;9(5):458–465. doi:10.1002/alr.22289
  • Blight BJ, Gill AS, Sumsion JS, et al. Cell adhesion molecules are upregulated and may drive inflammation in chronic rhinosinusitis with nasal polyposis. J Asthma Allergy. 2021;14:585–593. doi:10.2147/JAA.S307197
  • Gowhari Shabgah A, Al-Obaidi ZMJ, Sulaiman Rahman H, et al. Does CCL19 act as a double-edged sword in cancer development? Clin Exp Immunol. 2022;207(2):164–175. doi:10.1093/cei/uxab039
  • Crowe A, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. BIO-PROTOCOL. 2019;9(24). doi:10.21769/bioprotoc.3465
  • Mfuna Endam L, Cormier C, Bosse Y, Filali-Mouhim A, Desrosiers M. Association of IL1A, IL1B, and TNF gene polymorphisms with chronic rhinosinusitis with and without nasal polyposis: a replication study. Arch Otolaryngol Head Neck Surg. 2010;136(2):187–192. doi:10.1001/archoto.2009.219
  • Fajardo-Dolci G, Solorio-Abreu J, Romero-Alvarez JC, et al. DQA1 and DQB1 association and nasal polyposis. Otolaryngol Head Neck Surg. 2006;135(2):243–247. doi:10.1016/j.otohns.2006.03.034
  • Erbek SS, Yurtcu E, Erbek S, Atac FB, Sahin FI, Cakmak O. Proinflammatory cytokine single nucleotide polymorphisms in nasal polyposis. Arch Otolaryngol Head Neck Surg. 2007;133(7):705–709. doi:10.1001/archotol.133.7.705
  • Piski Z, Gerlinger I, Nepp N, Farkas K, Weber R. TNF-alpha inhibitors and rhinosinusitis-a systematic review and meta-analysis. Am J Rhinol Allergy. 2020;34(3):436–442. doi:10.1177/1945892419898988
  • Ulvmar MH, Hub E, Rot A. Atypical chemokine receptors. Exp Cell Res. 2011;317(5):556–568. doi:10.1016/j.yexcr.2011.01.012
  • Bonecchi R, Graham GJ. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 2016;7:224. doi:10.3389/fimmu.2016.00224
  • Smith KA, Gill AS, Pollard CE, et al. An eosinophil peroxidase activity assay accurately predicts eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol. 2023;152(2):400–407. doi:10.1016/j.jaci.2023.04.012