52
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

TAK-3 Inhibits Lipopolysaccharide-Induced Neuroinflammation in Traumatic Brain Injury Rats Through the TLR-4/NF-κB Pathway

, ORCID Icon, , , , , , & show all
Pages 2147-2158 | Received 04 Jan 2024, Accepted 26 Mar 2024, Published online: 09 Apr 2024

References

  • Feigin VL, Nichols E, Alam T., Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–480. doi:10.1016/S1474-4422(18)30499-X
  • Menon DK, Schwab K, Wright DW, et al. Position Statement: definition of Traumatic Brain Injury. Arch Phys Med Rehabil. 2010;91(11):1637–1640. doi:10.1016/j.apmr.2010.05.017
  • Sharma R, Shultz SR, Robinson MJ, et al. Infections after a traumatic brain injury: the complex interplay between the immune and neurological systems. Brain Behav Immun. 2019;79:63–74. doi:10.1016/j.bbi.2019.04.034
  • Howlett JR, Nelson LD, Stein MB. Mental Health Consequences of Traumatic Brain Injury. Biol Psychiatry. 2022;91(5):413–420. doi:10.1016/j.biopsych.2021.09.024
  • Gao Y, Wang T, Cheng Y, et al. Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med. 2023;199:97–112. doi:10.1016/j.freeradbiomed.2023.02.014
  • Zheng S, Wang C, Lin L, et al. TNF-α Impairs Pericyte-Mediated Cerebral Microcirculation via the NF-κB/iNOS Axis after Experimental Traumatic Brain Injury. J Neurotrauma. 2023;40(3–4):349–364. doi:10.1089/neu.2022.0016
  • Chen X, Chen C, Fan S, et al. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-kappaB pathway following experimental traumatic brain injury. J Neuroinflammation. 2018;15:116. doi:10.1186/s12974-018-1151-3
  • Hopp S, Nolte MW, Stetter C, et al. Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa. J Neuroinflammation. 2017;14(1):39. doi:10.1186/s12974-017-0815-8
  • Hegdekar N, Sarkar C, Bustos S, et al. Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy. 2023;19(7):2026–2044. doi:10.1080/15548627.2023.2167689
  • Lu G, Liu Y, Huang Y, et al. Prediction model of central nervous system infections in patients with severe traumatic brain injury after craniotomy. J Hosp Infect. 2023;136:90–99. doi:10.1016/j.jhin.2023.04.004
  • Hu Y, He W, Yao D, et al. Intrathecal or intraventricular antimicrobial therapy for post-neurosurgical intracranial infection due to multidrug-resistant and extensively drug-resistant Gram-negative bacteria: a systematic review and meta-analysis. Int J Antimicrob Agents. 2019;54:556–561. doi:10.1016/j.ijantimicag.2019.08.002
  • Baker-Austin C, Oliver JD, Alam M, et al. Vibrio spp. infections. Nature Reviews Disease Primers. 2018;4(1):1–19. doi:10.1038/s41572-018-0005-8
  • Pomar V, Benito N, Lopez-Contreras J, et al. Spontaneous gram-negative bacillary meningitis in adult patients: characteristics and outcome. BMC Infect Dis. 2013;13(1):451. doi:10.1186/1471-2334-13-451
  • Zhang Y, Zhou Y, Hou M, et al. Analysis of Cerebrospinal Fluid Routine Biochemical Level, Pathogenic Bacteria Distribution, and Risk Factors in Patients with Secondary Intracranial Infection after Brain Tumor Surgery. Evid Based Complement Alternat Med. 2022;2022:7716205. doi:10.1155/2022/7716205
  • Meister MR, Boulter JH, Yabes JM, et al. Epidemiology of cranial infections in battlefield-related penetrating and open cranial injuries. J Trauma Acute Care Surg. 2023;95(2S):S72–S78. doi:10.1097/TA.0000000000004018
  • Yang B, Yang R, Xu B, et al. miR-155 and miR-146a collectively regulate meningitic Escherichia coli infection-mediated neuroinflammatory responses. J Neuroinflammation. 2021;18(1):114. doi:10.1186/s12974-021-02165-4
  • Pons S, Frapy E, Sereme Y, et al. A high-throughput sequencing approach identifies immunotherapeutic targets for bacterial meningitis in neonates. EBioMedicine. 2023;88:104439. doi:10.1016/j.ebiom.2023.104439
  • Zhang Y, Liang X, Bao X, et al. Toll-like receptor 4 (TLR4) inhibitors: current research and prospective. Eur J Med Chem. 2022;235:114291. doi:10.1016/j.ejmech.2022.114291
  • Wang Y, Shan X, Dai Y, et al. Curcumin Analog L48H37 Prevents Lipopolysaccharide-Induced TLR4 Signaling Pathway Activation and Sepsis via Targeting MD2. J Pharmacol Exp Ther. 2015;353(3):539–550. doi:10.1124/jpet.115.222570
  • Hang CH, Shi JX, Tian J, et al. Effect of systemic LPS injection on cortical NF-kappaB activity and inflammatory response following traumatic brain injury in rats. Brain Res. 2004;1026:23–32. doi:10.1016/j.brainres.2004.07.090
  • Cai L, Gong Q, Qi L, et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal. 2022;20(1):56. doi:10.1186/s12964-022-00862-y
  • Munk M, Poulsen FR, Larsen L, et al. Cerebral Metabolic Changes Related to Oxidative Metabolism in a Model of Bacterial Meningitis Induced by Lipopolysaccharide. Neurocritical Care. 2018;29(3):496–503. doi:10.1007/s12028-018-0509-9
  • Perez-Dominguez M, Ávila-Muñoz E, Domínguez-Rivas E, et al. The detrimental effects of lipopolysaccharide-induced neuroinflammation on adult hippocampal neurogenesis depend on the duration of the pro-inflammatory response. Neural Regeneration Res. 2019;14.
  • Domínguez-Rivas E, Ávila-Muñoz E, Schwarzacher SW, et al. Adult hippocampal neurogenesis in the context of lipopolysaccharide-induced neuroinflammation: a molecular, cellular and behavioral review. Brain Behav Immun. 2021;97:286–302. doi:10.1016/j.bbi.2021.06.014
  • Fu YJ, Xu B, Huang SW, et al. Baicalin prevents LPS-induced activation of TLR4/NF-kappaB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin. 2021;42:88–96. doi:10.1038/s41401-020-0411-9
  • Zhang C, Wang X, Wang C, et al. Qingwenzhike Prescription Alleviates Acute Lung Injury Induced by LPS via Inhibiting TLR4/NF-kB Pathway and NLRP3 Inflammasome Activation. Front Pharmacol. 2021;12:790072. doi:10.3389/fphar.2021.790072
  • Wang N, Guo W, Liu T, et al. Toll-like receptors (TLR2 and TLR4) antagonist mitigates the onset of cerebral small vessel disease through PI3K/Akt/GSK3beta pathway in stroke-prone renovascular hypertensive rats. Biotechnol Genet Eng Rev;2023. 1–21. doi:10.1080/02648725.2023.2184961
  • Wang Y, Sadike D, Huang B, et al. Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination. J Neuroinflammation. 2023;20(1). doi:10.1186/s12974-023-02721-0
  • Ventorp F, Bay-Richter C, Nagendra AS, et al. Exendin-4 Treatment Improves LPS-Induced Depressive-Like Behavior Without Affecting Pro-Inflammatory Cytokines. J Parkinsons Dis. 2017;7(2):263–273. doi:10.3233/JPD-171068
  • Corrigan F, Arulsamy A, Collins-Praino LE, et al. Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain Behav Immun. 2017;64:124–139. doi:10.1016/j.bbi.2017.04.006
  • Mathew B, Ruiz P, Dutta S, et al. Structure-activity relationship (SAR) studies of N-(3-methylpyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (SRI-22819) as NF-ҡB activators for the treatment of ALS. Eur J Med Chem. 2021;210:112952. doi:10.1016/j.ejmech.2020.112952
  • Xiong A, Li J, Xiong R, et al. Inhibition of HIF-1alpha-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model. Sci Rep. 2022;12:2701. doi:10.1038/s41598-022-06773-9
  • Jakubs K, Bonde S, Iosif RE, et al. Inflammation Regulates Functional Integration of Neurons Born in Adult Brain. J Neurosci. 2008;28(47):12477–12488. doi:10.1523/JNEUROSCI.3240-08.2008
  • Guo ZN, Liu J, Chang J, et al. GAS6/Axl Signaling Modulates Blood-Brain Barrier Function Following Intravenous Thrombolysis in Acute Ischemic Stroke. Front Immunol. 2021;12:742359. doi:10.3389/fimmu.2021.742359
  • Alahmari A. Blood-Brain Barrier Overview: structural and Functional Correlation. Neural Plast. 2021;2021:6564585. doi:10.1155/2021/6564585
  • Vazquez-Rosa E, Shin MK, Dhar M, et al. P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc Natl Acad Sci U S A. 2020;117:27667–27675. doi:10.1073/pnas.2010430117
  • Kalra S, Malik R, Singh G, et al. Pathogenesis and management of traumatic brain injury (TBI): role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology. 2022;30(4):1153–1166. doi:10.1007/s10787-022-01017-8
  • Feng Y, Ju Y, Wu Q, Sun G, Yan Z. TAK-242, a toll-like receptor 4 antagonist, against brain injury by alleviates autophagy and inflammation in rats. Open Life Sci. 2023;18(1):20220662. doi:10.1515/biol-2022-0662
  • Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci. 2020;21. doi:10.3390/ijms22010021
  • Kawakita F, Fujimoto M, Liu L, et al. Effects of Toll-Like Receptor 4 Antagonists Against Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage in Mice. Mol Neurobiol. 2017;54(8):6624–6633. doi:10.1007/s12035-016-0178-7
  • Gabarin RS, Li M, Zimmel PA, et al. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: avenues for Novel Therapeutic Strategies. J Innate Immun. 2021;13(6):323–332. doi:10.1159/000515740
  • Hsieh WT, Hsu MH, Lin WJ, et al. Ergosta-7, 9 (11), 22-trien-3β-ol Interferes with LPS Docking to LBP, CD14, and TLR4/MD-2 Co-Receptors to Attenuate the NF-κB Inflammatory Pathway In Vitro and Drosophila. Int J Mol Sci. 2021;22:6511. doi:10.3390/ijms22126511