57
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Dynamic Changes and Clinical Significance of Plasma Galectin-3 in Patients with Acute Ischemic Stroke Undergoing Endovascular Therapy

ORCID Icon, , , , & ORCID Icon
Pages 1377-1387 | Received 17 Dec 2023, Accepted 12 Feb 2024, Published online: 29 Feb 2024

References

  • Tu WJ, Wang LD. China stroke surveillance report 2021. Mil Med Res. 2023;10(1):33. doi:10.1186/s40779-023-00463-x
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–397. doi:10.1016/S0166-2236(99)01401-0
  • Qiu YM, Zhang CL, Chen AQ, et al. Immune cells in the BBB disruption after acute ischemic stroke: targets for immune therapy? Front Immunol. 2021;12:678744. doi:10.3389/fimmu.2021.678744
  • Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5(1):29–41. doi:10.1038/nrc1527
  • Lalancette-Hébert M, Swarup V, Beaulieu JM, et al. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci. 2012;32(30):10383–10395. doi:10.1523/JNEUROSCI.1498-12.2012
  • Rabinovich GA, Toscano MA. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol. 2009;9(5):338–352. doi:10.1038/nri2536
  • Shin T. The pleiotropic effects of galectin-3 in neuroinflammation: a review. Acta Histochem. 2013;115(5):407–411. doi:10.1016/j.acthis.2012.11.010
  • Srejovic I, Selakovic D, Jovicic N, Jakovljević V, Lukic ML, Rosic G. Galectin-3: roles in neurodevelopment, neuroinflammation, and behavior. Biomolecules. 2020;10(5):798. doi:10.3390/biom10050798
  • Burguillos MA, Svensson M, Schulte T, et al. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep. 2015;10(9):1626–1638. doi:10.1016/j.celrep.2015.02.012
  • Wesley UV, Sutton IC, Cunningham K, et al. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab. 2021;41(4):857–873. doi:10.1177/0271678X20931137
  • Markowska AI, Liu FT, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med. 2010;207(9):1981–1993. doi:10.1084/jem.20090121
  • Nangia-Makker P, Honjo Y, Sarvis R, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156(3):899–909. doi:10.1016/S0002-9440(10)64959-0
  • Yan YP, Lang BT, Vemuganti R, Dempsey RJ. Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 2009;1288:116–124. doi:10.1016/j.brainres.2009.06.073
  • Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27(10):2596–2605. doi:10.1523/JNEUROSCI.5360-06.2007
  • Rahimian R, Lively S, Abdelhamid E, et al. Delayed galectin-3-mediated reprogramming of microglia after stroke is protective. Mol Neurobiol. 2019;56(9):6371–6385. doi:10.1007/s12035-019-1527-0
  • Doverhag C, Hedtjärn M, Poirier F, et al. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis. 2010;38(1):36–46. doi:10.1016/j.nbd.2009.12.024
  • Wang A, Zhong C, Zhu Z, et al. Serum galectin-3 and poor outcomes among patients with acute ischemic stroke. Stroke. 2018;49(1):211–214. doi:10.1161/STROKEAHA.117.019084
  • Dong H, Wang ZH, Zhang N, Liu SD, Zhao JJ, Liu SY. Serum galectin-3 level, not galectin-1, is associated with the clinical feature and outcome in patients with acute ischemic stroke. Oncotarget. 2017;8(65):109752–109761. doi:10.18632/oncotarget.18211
  • Han X, Geng B, Deng F, et al. Galectin-3 is associated with the functional outcome and mortality in stroke patients: a systematic review and meta-analysis. Heliyon. 2023;9:2.
  • Zhuang JJ, Zhou L, Zheng YH, Ding YS. The serum galectin-3 levels are associated with the severity and prognosis of ischemic stroke. Aging. 2021;13(5):7454–7464. doi:10.18632/aging.202610
  • Rahimian R, Béland LC, Kriz J. Galectin-3: mediator of microglia responses in injured brain. Drug Discov Today. 2018;23(2):375–381. doi:10.1016/j.drudis.2017.11.004
  • Liang D, Zeng X, Yao M, et al. Dynamic changes in the glycocalyx and clinical outcomes in patients undergoing endovascular treatments for large vessel occlusion. Front Neurol. 2023;14:1046915. doi:10.3389/fneur.2023.1046915
  • Guo ZN, Guo WT, Liu J, et al. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology. 2019;93(1):e8–e19. doi:10.1212/WNL.0000000000007732
  • Chen PH, Gao S, Wang YJ, Xu AD, Li YS, Wang D. Classifying ischemic stroke, from TOAST to CISS. CNS Neurosci Ther. 2012;18(6):452–456. doi:10.1111/j.1755-5949.2011.00292.x
  • Zaidat OO, Yoo AJ, Khatri P, et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke. 2013;44(9):2650–2663. doi:10.1161/STROKEAHA.113.001972
  • Jeong HG, Kim BJ, Yang MH, Han MK, Bae HJ. Neuroimaging markers for early neurologic deterioration in single small subcortical infarction. Stroke. 2015;46(3):687–691. doi:10.1161/STROKEAHA.114.007466
  • Zhong W, Yan S, Chen Z, et al. Stroke outcome of early antiplatelet in post-thrombolysis haemorrhagic infarction. J Neurol Neurosurg Psychiatry. 2022;2022:328778.
  • Hao Y, Yang D, Wang H, et al. Predictors for symptomatic intracranial hemorrhage after endovascular treatment of acute ischemic stroke. Stroke. 2017;48(5):1203–1209. doi:10.1161/STROKEAHA.116.016368
  • Molina CA, Alvarez-Sabín J. Recanalization and reperfusion therapies for acute ischemic stroke. Cerebrovasc Dis. 2009;27(1):162–167. doi:10.1159/000200455
  • Xu X, Chen M, Zhu D. Reperfusion and cytoprotective agents are a mutually beneficial pair in ischaemic stroke therapy: an overview of pathophysiology, pharmacological targets and candidate drugs focusing on excitotoxicity and free radical. Stroke Vasc Neurol. 2023;svn–2023–002671. doi:10.1136/svn-2023-002671
  • Ge H, Ma X, Wang J, et al. A potential relationship between MMP-9 rs2250889 and ischemic stroke susceptibility. Front Neurol. 2023;14:1178642. doi:10.3389/fneur.2023.1178642
  • Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis. 2005;20(4):213–219. doi:10.1159/000087701
  • Ferrari F, Rossi D, Ricciardi A, et al. Quantification and prospective evaluation of serum NfL and GFAP as blood-derived biomarkers of outcome in acute ischemic stroke patients. J Cereb Blood Flow Metab. 2023;43(9):1601–1611. doi:10.1177/0271678X231172520
  • Rezaei M, Mokhtari MJ, Bayat M, et al. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol. 2021;21(1):54. doi:10.1186/s12883-021-02081-3
  • Tian DS, Qin C, Zhou LQ, et al. FSAP aggravated endothelial dysfunction and neurological deficits in acute ischemic stroke due to large vessel occlusion. Signal Transduct Target Ther. 2022;7(1):6. doi:10.1038/s41392-021-00802-1
  • Bres-Bullrich M, Fridman S, Sposato LA. Relative effect of stroke severity and age on outcomes of mechanical thrombectomy in acute ischemic stroke. Stroke. 2021;52(9):2846–2848. doi:10.1161/STROKEAHA.121.034946
  • Fan J, Li X, Yu X, et al. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990–2030. Neurology. 2023;101(2):e137–e150. doi:10.1212/WNL.0000000000207387
  • LeCouffe NE, Kappelhof M, Treurniet KM, et al. A randomized trial of intravenous alteplase before endovascular treatment for stroke. N Engl J Med. 2021;385(20):1833–1844. doi:10.1056/NEJMoa2107727
  • Fischer U, Kaesmacher J, S Plattner P, et al. Swift direct: solitaire™ with the intention for thrombectomy plus intravenous t-PA versus direct solitaire™ stent-retriever thrombectomy in acute anterior circulation stroke: methodology of a randomized, controlled, multicentre study. Int J Stroke. 2022;17(6):698–705. doi:10.1177/17474930211048768
  • Mitchell PJ, Yan B, Churilov L, et al. Endovascular thrombectomy versus standard bridging thrombolytic with endovascular thrombectomy within 4·5 h of stroke onset: an open-label, blinded-endpoint, randomised non-inferiority trial. Lancet. 2022;400(10346):116–125. doi:10.1016/S0140-6736(22)00564-5
  • Balami JS, Chen RL, Grunwald IQ, Buchan AM. Neurological complications of acute ischaemic stroke. Lancet Neurol. 2011;10(4):357–371. doi:10.1016/S1474-4422(10)70313-6
  • Bracard S, Ducrocq X, Mas JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016;15(11):1138–1147. doi:10.1016/S1474-4422(16)30177-6
  • Li W, Yuan S, Sui X, et al. Higher serum occludin after successful reperfusion Is associated with early neurological deterioration. CNS Neurosci Ther. 2022;28(7):999–1007. doi:10.1111/cns.13830
  • Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2017;157:247–272. doi:10.1016/j.pneurobio.2016.01.005
  • Álvarez-Sabín J, Maisterra O, Santamarina E, Kase CS. Factors influencing haemorrhagic transformation in ischaemic stroke. Lancet Neurol. 2013;12(7):689–705. doi:10.1016/S1474-4422(13)70055-3
  • Ferro D, Matias M, Neto J, et al. Neutrophil-to-lymphocyte ratio predicts cerebral edema and clinical worsening early after reperfusion therapy in stroke. Stroke. 2021;52(3):859–867. doi:10.1161/STROKEAHA.120.032130
  • Bernardo-Castro S, Sousa JA, Brás A, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol. 2020;11:594672. doi:10.3389/fneur.2020.594672
  • Hansen C, Sastre C, Wolcott Z, Bevers MB, Kimberly WT. Time-dependent, dynamic prediction of fatty acid-binding protein 4, galectin-3, and soluble ST2 measurement with poor outcome after acute stroke. Int J Stroke. 2021;16(6):660–668. doi:10.1177/1747493020971166
  • Cui Y, Zhang NN, Wang D, Meng WH, Chen HS. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-ĸB signaling pathway in microglia. J Inflamm Res. 2022;15:3369–3385. doi:10.2147/JIR.S366927