56
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Tibial Cortex Transverse Transport Facilitates Severe Diabetic Foot Wound Healing via HIF-1α-Induced Angiogenesis

, , , , , , , , , , , ORCID Icon, & show all
Pages 2681-2696 | Received 28 Jan 2024, Accepted 18 Apr 2024, Published online: 30 Apr 2024

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabet Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Senneville É, Albalawi Z, van Asten SA, et al. IWGDF/IDSA guidelines on the diagnosis and treatment of diabetes-related foot infections (IWGDF/IDSA 2023). Clin Infect Dis off Publ Infect Dis Soc Am. 2023:ciad527. doi:10.1093/cid/ciad527
  • Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet Lond Engl. 2005;366:9498. doi:10.1016/S0140-6736(05)67698-2
  • M K, F M, Ajm B, S E. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care. 2023;46(1). doi:10.2337/dci22-0043
  • van Netten JJ, Bus SA, Apelqvist J, et al. Definitions and criteria for diabetes-related foot disease (IWGDF 2023 update). Diabetes Metab Res Rev. 2023:e3654. doi:10.1002/dmrr.3654
  • Chen Y, Kuang X, Zhou J, et al. Proximal tibial cortex transverse distraction facilitating healing and limb salvage in severe and recalcitrant diabetic foot ulcers. Clin Orthop. 2020;478(4):836–851.
  • Oda T, Niikura T, Fukui T, et al. Transcutaneous CO2 application accelerates fracture repair in streptozotocin-induced type I diabetic rats. BMJ Open Diabetes Res Care. 2020;8(2):e001129. doi:10.1136/bmjdrc-2019-001129
  • Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. J Clin Orthop Trauma. 2021;17. doi:10.1016/j.jcot.2021.01.017
  • Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop. 1989;238:249–281.
  • Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop. 1989;239:263–285. doi:10.1097/00003086-198902000-00029
  • Ilizarov GA, Ledyaev VI. The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. Clin Orthop. 1992;280:7–10.
  • Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop. 1990;250:8–26.
  • Minematsu K, Tsuchiya H, Taki J, Tomita K. Blood flow measurement during distraction osteogenesis. Clin Orthop. 1998;347:229–235.
  • Gubin AV, Borzunov DY, Marchenkova LO, Malkova TA, Smirnova IL. Contribution of G.A. Ilizarov to bone reconstruction: historical achievements and state of the art. Strateg Trauma Limb Reconstr. 2016;11(3):145–152. doi:10.1007/s11751-016-0261-7
  • Kuo KN, Qureshi A, Bush-Joseph CA, Templeton A. Ilizarov distraction histogenesis to reconstruct massive posttraumatic osteoarticular defects: a case report. J Bone Joint Surg Am. 2003;85(6):1125–1128. doi:10.2106/00004623-200306000-00025
  • Aston JW, Williams SA, Allard RN, Sawamura S, Carollo JJ. A new canine cruciate ligament formed through distraction histogenesis. Report of a pilot study. Clin Orthop. 1992;280:30–36.
  • Matsuyama J, Ohnishi I, Kageyama T, Oshida H, Suwabe T, Nakamura K. Osteogenesis and angiogenesis in regenerating bone during transverse distraction: quantitative evaluation using a canine model. Clin Orthop. 2005;433(243–250). doi:10.1097/01.blo.0000150562.24256.a4
  • Ohashi S, Ohnishi I, Kageyama T, Imai K, Nakamura K. Distraction osteogenesis promotes angiogenesis in the surrounding muscles. Clin Orthop. 2007;454:223–229. doi:10.1097/01.blo.0000238795.82466.74
  • Yang Y, Li Y, Pan Q, et al. Tibial cortex transverse transport accelerates wound healing via enhanced angiogenesis and immunomodulation. Bone Jt Res. 2022;11(4):189–199. doi:10.1302/2046-3758.114.BJR-2021-0364.R1
  • Ou S, Wu X, Yang Y, et al. Tibial cortex transverse transport potentiates diabetic wound healing via activation of SDF-1/CXCR4 signaling. PeerJ. 2023:11:e15894. doi:10.7717/peerj.15894
  • Chen Y, Ding X, Zhu Y, et al. Effect of tibial cortex transverse transport in patients with recalcitrant diabetic foot ulcers: a prospective multicenter cohort study. J Orthop Transl. 2022;36:194–204.
  • Liu G, Li S, Kuang X, et al. The emerging role of tibial cortex transverse transport in the treatment of chronic limb ischemic diseases. J Orthop Transl. 2020;25:17–24.
  • Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008;105(49):19426–19431. doi:10.1073/pnas.0805230105
  • Chen Z, Fu S, Wu Z, et al. Relationship between plasma angiogenic growth factors and diabetic foot ulcers. Clin Chim Acta Int J Clin Chem. 2018;482:95–100. doi:10.1016/j.cca.2018.03.035
  • M S, H Q, J Y, et al. Effect of negative-pressure wound therapy on the circulating number of peripheral endothelial progenitor cells in diabetic patients with mild to moderate degrees of ischaemic foot ulcer. Vascular. 2019;27(4). doi:10.1177/1708538119836360
  • Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A Phase III randomized placebo-controlled double-blind study. Diabetes Care. 1998;21(5):822–827. doi:10.2337/diacare.21.5.822
  • Li G, Ko CN, Li D, et al. A small molecule HIF-1α stabilizer that accelerates diabetic wound healing. Nat Commun. 2021;12(1):3363. doi:10.1038/s41467-021-23448-7
  • Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review. Rev Endocr Metab Disord. 2019;20(2):207–217. doi:10.1007/s11154-019-09492-1
  • Saaristo A, Tammela T, Farkkilā A, et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol. 2006;169(3):1080–1087. doi:10.2353/ajpath.2006.051251
  • Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother Biomedecine Pharmacother. 2019;112:108615. doi:10.1016/j.biopha.2019.108615
  • Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci. 2017;18(7):1419. doi:10.3390/ijms18071419
  • Mori S, Akagi M, Kikuyama A, Yasuda Y, Hamanishi C. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res off Publ Orthop Res Soc. 2006;24(4):653–663. doi:10.1002/jor.20076
  • Xu J, Sun Y, Wu T, et al. Enhancement of bone regeneration with the accordion technique via HIF-1α/VEGF activation in a rat distraction osteogenesis model. J Tissue Eng Regen Med. 2018;12(2):e1268–e1276. doi:10.1002/term.2534
  • Cao J, Wang L. A comparison of stromal cell-derived factor-1 expression during distraction osteogenesis and bone fracture in the mandible. J Craniofac Surg. 2013;24(3):805–808. doi:10.1097/SCS.0b013e31828f1ca7
  • Fujio M, Yamamoto A, Ando Y, et al. Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone. 2011;49(4):693–700. doi:10.1016/j.bone.2011.06.024
  • Weiss S, Zimmermann G, Baumgart R, Kasten P, Bidlingmaier M, Henle P. Systemic regulation of angiogenesis and matrix degradation in bone regeneration--distraction osteogenesis compared to rigid fracture healing. Bone. 2005;37(6):781–790. doi:10.1016/j.bone.2005.06.014
  • Shen Z, Chen Z, Li Z, et al. Total Flavonoids of rhizoma drynariae enhances angiogenic-osteogenic coupling during distraction osteogenesis by promoting type H vessel formation through PDGF-BB/PDGFR-β Instead of HIF-1α/ VEGF axis. Front Pharmacol. 2020;11:503524. doi:10.3389/fphar.2020.503524
  • Xu J, Chen Y, Liu Y, et al. Effect of SDF-1/Cxcr4 signaling antagonist AMD3100 on bone mineralization in distraction osteogenesis. Calcif Tissue Int. 2017;100(6):641–652. doi:10.1007/s00223-017-0249-4
  • Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: a critical review. Biomed Pharmacother Biomed Pharmacother. 2021;142:111946. doi:10.1016/j.biopha.2021.111946
  • Cheng KY, Lin ZH, Cheng YP, et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci Rep. 2018;8(1):12214. doi:10.1038/s41598-018-30597-1
  • Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81–96. doi:10.7150/thno.16803
  • Całkosiński I, Gostomska-Pampuch K, Majda J, et al. The influence of α-tocopherol on serum biochemical markers during experimentally induced pleuritis in rats exposed to dioxin. Inflammation. 2017;40(3):913–926. doi:10.1007/s10753-017-0536-2
  • Sun F, Lei Y, You J, et al. Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety-related behavior through AdipoR1. Mol Psychiatry. 2019;24(1):126–144. doi:10.1038/s41380-018-0102-9
  • Ricles LM, Hsieh PL, Dana N, et al. Therapeutic assessment of mesenchymal stem cells delivered within a PEGylated fibrin gel following an ischemic injury. Biomaterials. 2016;102:9–19. doi:10.1016/j.biomaterials.2016.06.011
  • Monteforte AJ, Lam B, Das S, et al. Glypican-1 nanoliposomes for potentiating growth factor activity in therapeutic angiogenesis. Biomaterials. 2016;94:45–56. doi:10.1016/j.biomaterials.2016.03.048
  • Nie X, Kuang X, Liu G, et al. Tibial cortex transverse transport facilitating healing in patients with recalcitrant non-diabetic leg ulcers. J Orthop Transl. 2021;27:1–7.
  • Chen Y, Huang YC, Yan CH, et al. Abnormal subchondral bone remodeling and its association with articular cartilage degradation in knees of type 2 diabetes patients. Bone Res. 2017;5:17034. doi:10.1038/boneres.2017.34
  • Chen Y, Hu Y, Yu YE, et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J Bone Miner Res off J Am Soc Bone Miner Res. 2018;33(2):316–327. doi:10.1002/jbmr.3313
  • Yuan Y, Ding X, Jing Z, et al. Modified tibial transverse transport technique for the treatment of ischemic diabetic foot ulcer in patients with type 2 diabetes. J Orthop Transl. 2021;29:100–105. doi:10.1016/j.jot.2021.04.006
  • Hua Q, Zhang Y, Wan C, et al. Chinese Association of Orthopaedic Surgeons (CAOS) clinical guideline for the treatment of diabetic foot ulcers using tibial cortex transverse transport technique (version 2020). J Orthop Transl. 2020;25:11–16. doi:10.1016/j.jot.2020.05.003
  • Shiha AE, Khalifa ARH, Assaghir YM, Kenawey MO. Medial transport of the fibula using the Ilizarov device for reconstruction of a massive defect of the tibia in two children. J Bone Joint Surg Br. 2008;90(12):1627–1630. doi:10.1302/0301-620X.90B12.21378
  • Qu L, Wang A, Tang F. The therapy of transverse tibial bone transport and vessel regeneration operation on thromboangitis obliterans. Zhonghua Yi Xue Za Zhi. 2001;81(10):622–624.
  • Li G, Simpson AH, Kenwright J, Triffitt JT. Effect of lengthening rate on angiogenesis during distraction osteogenesis. J Orthop Res off Publ Orthop Res Soc. 1999;17(3):362–367. doi:10.1002/jor.1100170310
  • Simpson AHRW, Keenan G, Nayagam S, Atkins RM, Marsh D, Clement ND. Low-intensity pulsed ultrasound does not influence bone healing by distraction osteogenesis: a multicentre double-blind randomised control trial. Bone Jt J. 2017;99(4):494–502. doi:10.1302/0301-620X.99B4.BJJ-2016-0559.R1
  • Shen J, Sun Y, Liu X, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12(1):415. doi:10.1186/s13287-021-02487-3
  • Yang Y, Andersson P, Hosaka K, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385. doi:10.1038/ncomms11385
  • Kellerová E, Delius W, Olerud S, Ström G. Changes in the muscle and skin blood flow following lower leg fracture in man. Acta Orthop Scand. 1970;41(3):249–260. doi:10.3109/17453677008991512
  • Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. BioMed Res Int. 2015;2015:549412. doi:10.1155/2015/549412
  • Fang J, Ji Q, Gao S, et al. PDGF-BB is involved in HIF-1α/CXCR4/CXCR7 axis promoting capillarization of hepatic sinusoidal endothelial cells. Heliyon. 2023;9(1):e12715. doi:10.1016/j.heliyon.2022.e12715