43
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Redox Biomarkers – An Effective Tool for Diagnosing COVID-19 Patients and Convalescents

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 2589-2607 | Received 27 Dec 2023, Accepted 02 Apr 2024, Published online: 26 Apr 2024

References

  • Dymicka-Piekarska V, Dorf J, Milewska A, et al. Neutrophil/Lymphocyte Ratio (NLR) and Lymphocyte/Monocyte Ratio (LMR) – risk of death inflammatory biomarkers in patients with COVID-19. J Inflamm Res. 2023;16:2209–2222. doi:10.2147/jir.s409871
  • Pum A, Ennemoser M, Adage T, Kungl AJ. Cytokines and chemokines in SARS-CoV-2 infections—therapeutic strategies targeting cytokine storm. Biomolecules. 2021;11(1):91. doi:10.3390/biom11010091
  • Ramezani M, Nemati H, Najafi F, Sayad B, Sadeghi M. A systematic review and meta-analysis on blood levels of cytokines/chemokines in COVID-19 cases. Gulhane Med J. 2022;64(3):208–216. doi:10.4274/gulhane.galenos.2021.25733
  • Hanson QM, Wilson KM, Shen M, et al. Targeting ACE2-RBD interaction as a platform for COVID-19 therapeutics: development and drug-repurposing screen of an AlphaLISA proximity assay. ACS Pharmacol Transl Sci. 2020;3(6):1352–1360. doi:10.1021/ACSPTSCI.0C00161/SUPPL_FILE/PT0C00161_SI_002.XLSX
  • Silvagno F, Vernone A, Pescarmona GP. The role of glutathione in protecting against the severe inflammatory response triggered by covid-19. Antioxidants. 2020;9(7):624. doi:10.3390/antiox9070624
  • Žarković N, Jastrząb A, Jarocka-Karpowicz I, et al. The impact of severe COVID-19 on plasma antioxidants. Molecules. 2022;27(16):5323. doi:10.3390/molecules27165323
  • Kosidło JW, Wolszczak-Biedrzycka B, Dymicka-Piekarska V, Dorf J, Matowicka-Karna J. Clinical significance and diagnostic utility of NLR, LMR, PLR and SII in the course of COVID-19: a literature review. J Inflamm Res. 2023;16:539–562. doi:10.2147/JIR.S395331
  • Wolszczak-Biedrzycka B, Dorf J, Milewska A, et al. The diagnostic value of inflammatory markers (CRP, IL6, CRP/IL6, CRP/L, LCR) for assessing the severity of COVID-19 symptoms based on the MEWS and predicting the risk of mortality. J Inflamm Res. 2023;16:2173–2188. doi:10.2147/jir.s406658
  • Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metabolic Syndr. 2021;15(3):869–875. doi:10.1016/j.dsx.2021.04.007
  • Flisiak R, Parczewski M, Horban A, et al. Management of SARS-CoV-2 infection: recommendations of the Polish association of epidemiologists and infectiologists. Annex no. 2 as of October 13, 2020. Pol Arch Intern Med. 2020;130(10):915–918. doi:10.20452/PAMW.15658
  • District Sanitary and Epidemiological Station in Wałbrzych Zaświadczenia o statusie ozdrowieńca [Certificates of recovery status] Available from: https://www.gov.pl/web/psse-walbrzych/zaswiadczenia-o-statusie-ozdrowienca. Accessed April 20, 2024.
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175. doi:10.1016/s0021-9258(19)45228-9
  • Enzymology HAM. Catalase in vitro. Elsevier; 1984. Available from: https://www.sciencedirect.com/science/article/pii/S0076687984050163. Accessed November 26, 2023.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–169.
  • Mize CE, Langdon RG. Hepatic glutathione reductase. I. Purification and general kinetic properties. J Biol Chem. 1962;237(5):1589–1595. doi:10.1016/S0021-9258(19)83745-6
  • Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106(1):207–212. doi:10.1016/0003-2697(80)90139-6
  • Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277–285. doi:10.1016/j.clinbiochem.2003.11.015
  • Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–1111. doi:10.1016/j.clinbiochem.2005.08.008
  • Knaś M, Maciejczyk M, Daniszewska I, et al. Oxidative damage to the salivary glands of rats with streptozotocin-induced diabetes-temporal study: oxidative stress and diabetic salivary glands. J Diabetes Res. 2016;2016:1–13. doi:10.1155/2016/4583742
  • Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. PubMed. Available from: https://pubmed.ncbi.nlm.nih.gov/12511184/. Accessed December 17, 2022.
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52. doi:10.1016/S0076-6879(78)52032-6
  • Mingoti MED, Bertollo AG, Simões JLB, Francisco GR, Bagatini MD, Ignácio ZM. COVID-19, oxidative stress, and neuroinflammation in the depression route. J Mol Neurosci. 2022;72(6):1166–1181. doi:10.1007/s12031-022-02004-y
  • Vollbracht C, Kraft K. Oxidative stress and hyper-inflammation as major drivers of severe COVID-19 and Long COVID: implications for the benefit of high-dose intravenous vitamin C. Front Pharmacol. 2022;13. doi:10.3389/fphar.2022.899198
  • Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020;77. doi:10.1016/j.jbior.2020.100741
  • Trujillo-Mayol I, Guerra-Valle M, Casas-Forero N, et al. Western dietary pattern antioxidant intakes and oxidative stress: importance during the SARS-CoV-2/COVID-19 pandemic. Adv Nutr. 2021;12(3):670–681. doi:10.1093/advances/nmaa171
  • Yaghoubi N, Youssefi M, Jabbari Azad F, Farzad F, Yavari Z, Zahedi Avval F. Total antioxidant capacity as a marker of severity of COVID-19 infection: possible prognostic and therapeutic clinical application. J Med Virol. 2022;94(4):1558–1565. doi:10.1002/jmv.27500
  • Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. Changes in oxidative markers in COVID-19 patients. Arch Med Res. 2021;52(8):843–849. doi:10.1016/j.arcmed.2021.06.004
  • Kumar P, Osahon O, Vides DB, Hanania N, Minard CG, Sekhar RV. Severe glutathione deficiency, oxidative stress and oxidant damage in adults hospitalized with covid-19: implications for glynac (glycine and n-acetylcysteine) supplementation. Antioxidants. 2022;11(1). doi:10.3390/antiox11010050
  • Glassman I, Le N, Mirhosseini M, et al. The role of glutathione in prevention of COVID-19 immunothrombosis: a review. Front Biosci. 2023;28(3):59. doi:10.31083/j.fbl2803059
  • Dikshit N, Kant S, Verma AK, Ansari KM. Study to estimate levels of oxidative stress biomarkers in long COVID patients. Lung India. 2022;39(Suppl 1):S137–S138.
  • Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.979719
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. BBA General Subjects. 1979;582(1). doi:10.1016/0304-4165(79)90289-7
  • Zhu Z, Du S, Du Y, Ren J, Ying G, Yan Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J Neurochem. 2018;144(1):93–104. doi:10.1111/jnc.14250
  • Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016;95:27–42. doi:10.1016/j.freeradbiomed.2016.02.028
  • Amini-Farsani Z, Yadollahi-Farsani M, Arab S, Forouzanfar F, Yadollahi M, Asgharzade S. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. Int Immunopharmacol. 2021;100:108071. doi:10.1016/j.intimp.2021.108071
  • Lee J, Kwon KH. Development of customized inner beauty products and customized cosmetics apps according to the use of NRF2 through DTC genetic testing after the COVID-19 pandemic. J Cosmet Dermatol. 2022;21(6):2288–2297. doi:10.1111/jocd.14467
  • Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: a physio-pathological theory. Med Hypotheses. 2021;146:110412. doi:10.1016/j.mehy.2020.110412
  • Banchini F. Covid-19 and nf-kb: the hepcidin paradox and the iron storm – reply. Acta Biomed. 2020;91(4). doi:10.23750/abm.v91i4.10904
  • Gümüş H, Erat T, Öztürk İ, Demir A, Koyuncu I. Oxidative stress and decreased Nrf2 level in pediatric patients with COVID-19. J Med Virol. 2022;94(5):2259–2264. doi:10.1002/jmv.27640
  • Muchtaridi M, Amirah SR, Harmonis JA, Ikram EHK. Role of nuclear factor Erythroid 2 (Nrf2) in the recovery of long COVID-19 using natural antioxidants: a systematic review. Antioxidants. 2022;11(8):1551. doi:10.3390/antiox11081551
  • Al-Mamouri SRK, Al-Kufaishi AMA. Evaluation of total antioxidant capacity and total oxidant status in patients with COVID-19. J Pharm Negat Results. 2022;13(4). doi:10.47750/pnr.2022.13.04.016
  • Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021;42:100897. doi:10.1016/j.nmni.2021.100897
  • Çakırca G, Damar Çakırca T, Üstünel M, Torun A, Koyuncu İ. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Ir J Med Sci. 2022;191(4):1925–1930. doi:10.1007/s11845-021-02743-8
  • Sengupta P, Dutta S, Roychoudhury S, D’souza UJA, Govindasamy K, Kolesarova A. COVID-19, oxidative stress and male reproduction: possible role of antioxidants. Antioxidants. 2022;11(3):548. doi:10.3390/antiox11030548
  • Paul AK, Hossain MK, Mahboob T, et al. Does oxidative stress management help alleviation of COVID-19 symptoms in patients experiencing diabetes? Nutrients. 2022;14(2):321. doi:10.3390/nu14020321
  • Ebert T, Tran N, Schurgers L, Stenvinkel P, Shiels PG. Ageing – oxidative stress, PTMs and disease. Mol Aspects Med. 2022;86:101099. doi:10.1016/j.mam.2022.101099
  • Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection. J Adv Res. 2022;38:223–244. doi:10.1016/j.jare.2021.09.005
  • Wadhwa N, Mathew BB, Jatawa SK, Tiwari A. Lipid peroxidation: mechanism, models and significance. Int J Curr Sci. 2012;3:29–38.
  • Dorf J, Pryczynicz A, Matowicka-Karna J, et al. Could circulating biomarkers of nitrosative stress and protein glycoxidation be useful in patients with gastric cancer? Front Oncol. 2023;13. doi:10.3389/fonc.2023.1213802
  • Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473(7):805–825. doi:10.1042/BJ20151227
  • Yalcin Kehribar D, Cihangiroglu M, Sehmen E, et al. The receptor for advanced glycation end product (RAGE) pathway in COVID-19. Biomarkers. 2021;26(2):114–118. doi:10.1080/1354750X.2020.1861099
  • Muhammad M, Hassan TM, Baba SS, et al. Exploring NFκB pathway as a potent strategy to mitigate COVID-19 severe morbidity and mortality. J Public Health Afr. 2022;13(3). doi:10.4081/jphia.2022.1679
  • Goel S, Saheb Sharif-Askari F, Saheb Sharif Askari N, et al. SARS-CoV-2 Switches ‘on’ MAPK and NFκB Signaling via the reduction of nuclear DUSP1 and DUSP5 expression. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.631879
  • Anvari E, Fred RG, Welsh N. The H1-receptor antagonist cetirizine protects partially against cytokine- and hydrogen peroxide-induced β-TC6 cell death in vitro. Pancreas. 2014;43(4):624–629. doi:10.1097/MPA.0000000000000076
  • Tong M, Yan X, Jiang Y, et al. Endothelial biomarkers in patients recovered from COVID-19 one year after hospital discharge: a cross-sectional study. Mediterr J Hematol Infect Dis. 2022;14(1):e2022033. doi:10.4084/MJHID.2022.033
  • Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023;548:117487. doi:10.1016/j.cca.2023.117487
  • Salehi M, Amiri S, Ilghari D, Hasham LFA, Piri H. The remarkable roles of the Receptor for Advanced Glycation End Products (RAGE) and its soluble isoforms in COVID-19: the importance of RAGE pathway in the lung injuries. Indian J Clin Biochem. 2023;38(2):159–171. doi:10.1007/s12291-022-01081-5
  • Spadaro S, Fogagnolo A, Campo G, et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit Care. 2021;25(1). doi:10.1186/s13054-021-03499-4
  • Dorf J, Zaręba K, Pryczynicz A, et al. Diagnostic significance and utility of circulating redox biomarkers in patients with gastric cancer–preliminary study. Ann Med. 2023;55(2). doi:10.1080/07853890.2023.2241472
  • Kosanovic T, Sagic D, Djukic V, et al. Time course of redox biomarkers in covid-19 pneumonia: relation with inflammatory, multiorgan impairment biomarkers and ct findings. Antioxidants. 2021;10(7):1126. doi:10.3390/antiox10071126
  • Ducastel M, Chenevier‐gobeaux C, Ballaa Y, et al. Oxidative stress and inflammatory biomarkers for the prediction of severity and ICU admission in unselected patients hospitalized with covid‐19. Int J Mol Sci. 2021;22(14):7462. doi:10.3390/ijms22147462
  • Satała J, Woźniak A, Fabiś M, et al. Severe COVID-19 classified by simple covid risk index is associated with higher levels of advanced oxidation protein products and 8-hydroxy 2 deoxyguanosine. Epidemiol Infect. 2023;151. doi:10.1017/S0950268823001280
  • Šķesters A, Lece A, Kustovs D, Zolovs M. Selenium status and oxidative stress in SARS-CoV-2 patients. Medicina. 2023;59(3):527. doi:10.3390/medicina59030527
  • Žarković N, Orehovec B, Milković L, et al. Preliminary findings on the association of the lipid peroxidation product 4-hydroxynonenal with the lethal outcome of aggressive covid-19. Antioxidants. 2021;10(9):1341. doi:10.3390/antiox10091341
  • de Morais Batista F, Puga MAM, da Silva PV, et al. Serum biomarkers associated with SARS-CoV-2 severity. Sci Rep. 2022;12(1):1–9. doi:10.1038/s41598-022-20062-5
  • Żebrowska E, Maciejczyk M, Żendzian-Piotrowska M, Zalewska A, Chabowski A. High protein diet induces oxidative stress in rat cerebral cortex and hypothalamus. Int J Mol Sci. 2019;20(7):1547. doi:10.3390/ijms20071547
  • Maciejczyk M, Żebrowska E, Zalewska A, Chabowski A. Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxid Med Cell Longev. 2018;2018:1–11. doi:10.1155/2018/6940515
  • Bokhari MM, Khurshid R, Jabbar U, et al. Is there an association between thyroid dysfunction and breast cancer? Pak J Med Health Sci. 2022;16(4):252–255. doi:10.53350/pjmhs22164252
  • Eskelinen M, Saimanen I, Koskela R, Holopainen A, Selander T, Eskelinen M. Plasma Concentration of the Lipid Peroxidation (LP) biomarker 4-Ηydroxynonenal (4-HNE) in benign and cancer patients. In Vivo. 2022;36(2):773–779. doi:10.21873/INVIVO.12764
  • Haroun M, Elsewedy HS, Shehata TM, et al. Significant of injectable brucine PEGylated niosomes in treatment of MDA cancer cells. J Drug Deliv Sci Technol. 2022;71. doi:10.1016/j.jddst.2022.103322
  • Wang H, Wang P, Zhu BT. Mechanism of erastin-induced ferroptosis in MDA-MB-231 human breast cancer cells: evidence for a critical role of protein disulfide isomerase. Mol Cell Biol. 2022;42(6). doi:10.1128/mcb.00522-21
  • Abbaszadeh S, Javidmehr A, Askari B, Janssen PML, Soraya H. Memantine, an NMDA receptor antagonist, attenuates cardiac remodeling, lipid peroxidation and neutrophil recruitment in heart failure: a cardioprotective agent? Biomed Pharmacother. 2018;108:1237–1243. doi:10.1016/j.biopha.2018.09.153
  • Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:1–21. doi:10.5402/2012/137289
  • Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325–340. doi:10.5607/en.2015.24.4.325
  • Martín-Fernández M, Arroyo V, Carnicero C, et al. Role of oxidative stress and lipid peroxidation in the pathophysiology of NAFLD. Antioxidants. 2022;11(11):2217. doi:10.3390/antiox11112217
  • Tsubouchi K, Araya J, Yoshida M, et al. Involvement of GPx4-regulated lipid peroxidation in idiopathic pulmonary fibrosis pathogenesis. J Immunol. 2019;203(8):2076–2087. doi:10.4049/jimmunol.1801232
  • Yoshikawa T, Mifune Y, Inui A, et al. Influence of diabetes-induced glycation and oxidative stress on the human rotator cuff. Antioxidants. 2022;11(4):743. doi:10.3390/antiox11040743
  • Yang L, Wang Z. Bench-to-bedside: innovation of small molecule anti-SARS-CoV-2 drugs in China. Eur J Med Chem. 2023;257:115503. doi:10.1016/J.EJMECH.2023.115503
  • Wang Z, Yang L. Post-acute sequelae of SARS-CoV-2 infection: a neglected public health issue. Front Public Health. 2022;10. doi:10.3389/FPUBH.2022.908757
  • Smail SW, Babaei E, Amin K. Hematological, inflammatory, coagulation, and oxidative/antioxidant biomarkers as predictors for severity and mortality in COVID-19: a prospective cohort-study. Int J Gen Med. 2023;16:565–580. doi:10.2147/IJGM.S402206
  • Galougahi KK, Antoniades C, Nicholls SJ, Channon KM, Figtree GA. Redox biomarkers in cardiovascular medicine. Eur Heart J. 2015;36(25):1576–1582. doi:10.1093/EURHEARTJ/EHV126
  • Pastore A, Petrillo S, Piermarini E, Piemonte F. Systemic redox biomarkers in neurodegenerative diseases. Curr Drug Metab. 2015;16(1):46–70. doi:10.2174/138920021601150702161250