57
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Unraveling the Molecular Regulation of Ferroptosis in Respiratory Diseases

ORCID Icon, , ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 2531-2546 | Received 28 Dec 2023, Accepted 06 Apr 2024, Published online: 25 Apr 2024

References

  • Mahapatra K, Mishra S, Behera B, Patil S, Gewirtz D, Bhutia S. The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci. 2021;78(23):7435–7449. doi:10.1007/s00018-021-03988-3
  • Battaglia A, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death. Cells. 2020;9(6):1505. doi:10.3390/cells9061505
  • Hirschhorn T, Stockwell B. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–143. doi:10.1016/j.freeradbiomed.2018.09.043
  • Zhan P, Lu X, Li Z, et al. Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int Immunopharmacol. 2022;113:109359. doi:10.1016/j.intimp.2022.109359
  • Ma T, Chen J, Zhu P, Zhang C, Zhou Y, Duan J. Focus on ferroptosis regulation: exploring novel mechanisms and applications of ferroptosis regulator. Life Sci. 2022;307:120868. doi:10.1016/j.lfs.2022.120868
  • Dixon S, Lemberg K, Lamprecht M, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi:10.1016/j.cell.2012.03.042
  • Gammella E, Recalcati S, Cairo G. Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxid Med Cell Longev. 2016;2016:8629024. doi:10.1155/2016/8629024
  • Zhao L, Peng Y, He S, et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer. 2021;24(3):642–654. doi:10.1007/s10120-021-01159-8
  • Ocansey D, Yuan J, Wei Z, Mao F, Zhang Z. Role of ferroptosis in the pathogenesis and as a therapeutic target of inflammatory bowel disease (Review). IntJ Mol Med. 2023;51(6). doi:10.3892/ijmm.2023.5256
  • Yang W, Stockwell B. Ferroptosis: death by Lipid Peroxidation. Trends Cell Biol. 2016;26(3):165–176. doi:10.1016/j.tcb.2015.10.014
  • Van Loenhout J, Peeters M, Bogaerts A, Smits E, Deben C. Oxidative stress-inducing anticancer therapies: taking a closer look at their immunomodulating effects. Antioxidants. 2020;9(12):1188. doi:10.3390/antiox9121188
  • Deng L, He S, Guo N, Tian W, Zhang W, Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflammation Res. 2023;72(2):281–299. doi:10.1007/s00011-022-01672-1
  • Kotsiou O, Papagiannis D, Papadopoulou R, Gourgoulianis K. Calprotectin in Lung Diseases. Int J Mol Sci. 2021;22(4):1706. doi:10.3390/ijms22041706
  • Li Y, Yang Y, Yang Y. Multifaceted roles of ferroptosis in lung diseases. Front Mol Biosci. 2022;9:919187. doi:10.3389/fmolb.2022.919187
  • Chen H, Wu Y, Li W, Shen H, Chen Z. 铁死亡在呼吸系统疾病中的研究进展及应用 [Ferroptosis in respiratory diseases]. Sheng Li Xue Bao. 2020;72(5):575–585. Chinese.
  • Meunier E, Neyrolles O. Die another way: ferroptosis drives tuberculosis pathology. J Exp Med. 2019;216(3):471–473. doi:10.1084/jem.20190038
  • Zhang W, Cloonan S. To “Fe”ed or Not to “Fe”ed: iron depletion exacerbates emphysema development in murine smoke model. Am J Respir Cell Mol Biol. 2020;62(5):541–542. doi:10.1165/rcmb.2019-0376ED
  • Zhou N, Bao J. FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database. 2020;2020. doi:10.1093/database/baaa021
  • Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864–868. doi:10.1038/nature05859
  • Yang W, Stockwell B. Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol. 2008;9(6):R92. doi:10.1186/gb-2008-9-6-r92
  • Li H, Liu Y, Shang L, et al. Iron regulatory protein 2 modulates the switch from aerobic glycolysis to oxidative phosphorylation in mouse embryonic fibroblasts. Proc Natl Acad Sci USA. 2019;116(20):9871–9876. doi:10.1073/pnas.1820051116
  • Kim J, Molina R, Donaghey T, Buckett P, Brain J, Wessling-Resnick M. Influence of DMT1 and iron status on inflammatory responses in the lung. Am J Physiol Lung Cell Mol Physiol. 2011;300(4):L659–L665. doi:10.1152/ajplung.00343.2010
  • Dutt S, Hamza I, Bartnikas T. Molecular mechanisms of iron and heme metabolism. Annu Rev Nutr. 2022;42(1):311–335. doi:10.1146/annurev-nutr-062320-112625
  • NaveenKumar S, SharathBabu B, Hemshekhar M, Kemparaju K, Girish K, Mugesh G. The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets. ACS Chem Biol. 2018;13(8):1996–2002. doi:10.1021/acschembio.8b00458
  • Kwon S, Ma S, Hwang J, Lee S, Jang C. Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta 25–35 neurotoxicity. Neuroscience. 2015;304:14–28. doi:10.1016/j.neuroscience.2015.07.030
  • Adedoyin O, Boddu R, Traylor A, et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol. 2018;314(5):F702–F714. doi:10.1152/ajprenal.00044.2017
  • Zhu L, Chen D, Zhu Y, et al. GPX4-regulated ferroptosis mediates S100-induced experimental autoimmune hepatitis associated with the Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2021;2021:6551069. doi:10.1155/2021/6551069
  • Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022;289(22):7038–7050. doi:10.1111/febs.16059
  • Lee J, Kim W, Bae K, Lee S, Lee E. Lipid Metabolism and Ferroptosis. Biology. 2021;10(3):184. doi:10.3390/biology10030184
  • Hadian K, Stockwell B. SnapShot: ferroptosis. Cell. 2020;181(5):1188–1188.e1181. doi:10.1016/j.cell.2020.04.039
  • Ma T, Du J, Zhang Y, Wang Y, Wang B, Zhang T. GPX4-independent ferroptosis-a new strategy in disease’s therapy. Cell Death Discovery. 2022;8(1):434. doi:10.1038/s41420-022-01212-0
  • Lin H, Ho H, Chang Y, Wei C, Chu P. The evolving role of ferroptosis in breast cancer: translational implications present and future. Cancers. 2021;13(18):4576. doi:10.3390/cancers13184576
  • Doll S, Freitas F, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–698. doi:10.1038/s41586-019-1707-0
  • Guan W, Xia M, Ji M, et al. Iron induces two distinct Ca signalling cascades in astrocytes. Commun Biol. 2021;4(1):525. doi:10.1038/s42003-021-02060-x
  • David S, Jhelum P, Ryan F, Jeong S, Kroner A. Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders. Antioxid Redox Signaling. 2022;37(1–3):150–170. doi:10.1089/ars.2021.0218
  • Graham R, Reutens G, Herbison C, et al. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol. 2008;48(2):327–334. doi:10.1016/j.jhep.2007.10.009
  • Hui W, Zhang W, Liu C, Wan S, Sun W, Su L. Alterations of Signaling Pathways in Essential Thrombocythemia with Calreticulin Mutation. Cancer Manage Res. 2021;13:6231–6238. doi:10.2147/CMAR.S316919
  • Ogun AS, Adeyinka A. Biochemistry, Transferrin. In: StatPearls. Treasure Island (FL): StatPearls Publishing, Copyright © 2024, StatPearls Publishing LLC; 2024.
  • Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Develop Biol. 2020;8:590226. doi:10.3389/fcell.2020.590226
  • Li S, Huang Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol. 2022;24(1):1–12. doi:10.1007/s12094-021-02669-8
  • Takahashi M, Mizumura K, Gon Y, et al. Iron-dependent mitochondrial dysfunction contributes to the pathogenesis of pulmonary fibrosis. Front Pharmacol. 2021;12:643980. doi:10.3389/fphar.2021.643980
  • Kajarabille N, Latunde-Dada G. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci. 2019;20(19):4968. doi:10.3390/ijms20194968
  • Zhang H, Hu B, Li Z, et al. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol. 2022;24(1):88–98. doi:10.1038/s41556-021-00818-3
  • Sharma A, Flora S, Ghose J. Positive and negative regulation of ferroptosis and its role in maintaining metabolic and redox homeostasis. Oxid Med Cell Longev. 2021;2021:9074206. doi:10.1155/2021/9074206
  • Latunde-Dada G. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017;1861(8):1893–1900. doi:10.1016/j.bbagen.2017.05.019
  • Merkel M, Goebel B, Boll M, et al. Mitochondrial reactive oxygen species formation determines ACSL4/LPCAT2-mediated ferroptosis. Antioxidants. 2023;12(8):1590. doi:10.3390/antiox12081590
  • Cao D, Zheng J, Li Z, Yu Y, Chen Z, Wang Q. ACSL4 inhibition prevents macrophage ferroptosis and alleviates fibrosis in bleomycin-induced systemic sclerosis model. Arthritis Res Therapy. 2023;25(1):212. doi:10.1186/s13075-023-03190-9
  • Cui J, Wang Y, Tian X, et al. LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity. Antioxid Redox Signaling. 2023;39(7–9):491–511. doi:10.1089/ars.2023.0237
  • Li F, Long H, Zhou Z, Luo H, Xu S, Gao L. axisSystem X /GSH/GPX4: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 2022;13:910292. doi:10.3389/fphar.2022.910292
  • Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 2022;24(1):449. doi:10.3390/ijms24010449
  • Agmon E, Stockwell B. Lipid homeostasis and regulated cell death. Curr Opin Chem Biol. 2017;39:83–89. doi:10.1016/j.cbpa.2017.06.002
  • Abdalkader M, Lampinen R, Kanninen K, Malm T, Liddell J. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci. 2018;12:466. doi:10.3389/fnins.2018.00466
  • Bersuker K, Hendricks J, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–692. doi:10.1038/s41586-019-1705-2
  • Lv Y, Liang C, Sun Q, et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun. 2023;14(1):5933. doi:10.1038/s41467-023-41626-7
  • Zhang Y, Xia M, Zhou Z, et al. p53 promoted ferroptosis in ovarian cancer cells treated with human serum incubated-superparamagnetic iron oxides. Int j Nanomed. 2021;16:283–296. doi:10.2147/IJN.S282489
  • Li X, Zou Y, Fu Y, et al. A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis. Front Physiol. 2021;12:680544. doi:10.3389/fphys.2021.680544
  • Zeng C, Lin J, Zhang K, et al. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci. 2022;113(11):3766–3775. doi:10.1111/cas.15531
  • Chen D, Chu B, Yang X, et al. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun. 2021;12(1):3644. doi:10.1038/s41467-021-23902-6
  • Liu D, Duong C, Haupt S, et al. Inhibiting the system x/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun. 2017;8(1):14844. doi:10.1038/ncomms14844
  • Yu S, Jia J, Zheng J, Zhou Y, Jia D, Wang J. Recent progress of ferroptosis in lung diseases. Front Cell Develop Biol. 2021;9:789517. doi:10.3389/fcell.2021.789517
  • Pan L, Gong C, Sun Y, et al. Induction mechanism of ferroptosis: a novel therapeutic target in lung disease. Front Pharmacol. 2022;13:1093244. doi:10.3389/fphar.2022.1093244
  • Abdulsalim S, Unnikrishnan M, Manu M, et al. Impact of a clinical pharmacist intervention on medicine costs in patients with chronic obstructive pulmonary disease in India. Pharmaco Econ Open. 2020;4(2):331–342. doi:10.1007/s41669-019-0172-x
  • Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. doi:10.1038/s41467-019-10991-7
  • Ziya Şener Y, Okşul M, Hekimsoy V. Smoking has effects on MicroRNAs and pulmonary hypertension. Acta Cardiologica Sinica. 2019;35(3):349. doi:10.6515/ACS.201905_35(3).20190108A
  • Seo Y, Park J, Kim J, Lee M. Cigarette smoke-induced reactive oxygen species formation: a concise review. Antioxidants. 2023;12(9):1732. doi:10.3390/antiox12091732
  • Park E, Park Y, Lee S, Lee K, Yoon C. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55–66. doi:10.1016/j.toxlet.2018.12.007
  • Liu J, Zhang Z, Yang Y, Di T, Wu Y, Bian T. NCOA4-mediated ferroptosis in bronchial epithelial cells promotes macrophage M2 polarization in COPD emphysema. Int J Chronic Obstr. 2022;17:667–681. doi:10.2147/COPD.S354896
  • Zhao J, Li M, Wang Z, et al. Role of PM in the development and progression of COPD and its mechanisms. Respir Res. 2019;20(1):120. doi:10.1186/s12931-019-1081-3
  • Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut. 2019;254:112937. doi:10.1016/j.envpol.2019.07.105
  • Ren J, Yin B, Li X, et al. Sesamin attenuates PM-induced cardiovascular injury by inhibiting ferroptosis in rats. Food Funct. 2021;12(24):12671–12682. doi:10.1039/D1FO02913D
  • Xia H, Wu Y, Zhao J, et al. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ. 2023;30(5):1293–1304. doi:10.1038/s41418-023-01138-9
  • Sauler M, McDonough J, Adams T, et al. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun. 2022;13(1):494. doi:10.1038/s41467-022-28062-9
  • Dar H, Tyurina Y, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639–4653. doi:10.1172/JCI99490
  • Dar H, Anthonymuthu T, Ponomareva L, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. doi:10.1016/j.redox.2021.102045
  • Amaral E, Costa D, Namasivayam S, et al. Mycobacterium tuberculosisA major role for ferroptosis in -induced cell death and tissue necrosis. J Exp Med. 2019;216(3):556–570. doi:10.1084/jem.20181776
  • Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol. 2023;14:1149203. doi:10.3389/fimmu.2023.1149203
  • Wenzel S, Tyurina Y, Zhao J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 2017;171(3):628–641.e626. doi:10.1016/j.cell.2017.09.044
  • Vasconcelos L, Ferreira S, Silva M, et al. Uncovering the role of oxidative imbalance in the development and progression of bronchial asthma. Oxid Med Cell Longev. 2021;2021:6692110. doi:10.1155/2021/6692110
  • Gauthier M, Kale SL, Oriss TB, et al. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J Allergy Clin Immunol. 2023;152(1):94–106.
  • León B, Ballesteros-Tato A. Modulating Th2 cell immunity for the treatment of asthma. Front Immunol. 2021;12:637948. doi:10.3389/fimmu.2021.637948
  • Zhao J, Dar H, Deng Y, et al. PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc Natl Acad Sci USA. 2020;117(25):14376–14385. doi:10.1073/pnas.1921618117
  • Richeldi L, Collard H, Jones M. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–1952. doi:10.1016/S0140-6736(17)30866-8
  • Cheng H, Feng D, Li X, et al. Iron deposition-induced ferroptosis in alveolar type II cells promotes the development of pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166204. doi:10.1016/j.bbadis.2021.166204
  • Hanania A, Mainwaring W, Ghebre Y, Hanania N, Ludwig M. Radiation-induced lung injury: assessment and management. Chest. 2019;156(1):150–162. doi:10.1016/j.chest.2019.03.033
  • Gong Y, Wang N, Liu N, Dong H. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis. DNA Cell Biol. 2019;38(7):725–733. doi:10.1089/dna.2018.4541
  • Ye L, Chaudhary K, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 2020;15(2):469–484. doi:10.1021/acschembio.9b00939
  • Li X, Duan L, Yuan S, Zhuang X, Qiao T, He J. Ferroptosis inhibitor alleviates Radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflam. 2019;16(1):11. doi:10.1186/s12950-019-0216-0
  • Pan X, Lin Z, Jiang D, et al. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett. 2019;17(3):3001–3008. doi:10.3892/ol.2019.9888
  • Menou A, Duitman J, Crestani B. The impaired proteases and anti-proteases balance in Idiopathic Pulmonary Fibrosis. Matrix Biol. 2018;68–69:382–403. doi:10.1016/j.matbio.2018.03.001
  • Li M, Wang K, Zhang Y, et al. Ferroptosis-related genes in bronchoalveolar lavage fluid serves as prognostic biomarkers for idiopathic pulmonary fibrosis. Front Med. 2021;8:693959. doi:10.3389/fmed.2021.693959
  • Rashidipour N, Karami-Mohajeri S, Mandegary A, et al. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies. Toxicology. 2020;433–434:152407. doi:10.1016/j.tox.2020.152407
  • Du X, Dong R, Wu Y, Ni B. Physiological Effects of Ferroptosis on Organ Fibrosis. Oxid Med Cell Longev. 2022;2022:5295434. doi:10.1155/2022/5295434
  • Xu Y, Li X, Cheng Y, Yang M, Wang R. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J. 2020;34(12):16262–16275. doi:10.1096/fj.202001758R
  • Liu X, Pan B, Wang X, et al. Ischemia/reperfusion-activated ferroptosis in the early stage triggers excessive inflammation to aggregate lung injury in rats. Front Med. 2023;10:1181286. doi:10.3389/fmed.2023.1181286
  • Rauen U, de Groot H. Cold-induced release of reactive oxygen species as a decisive mediator of hypothermia injury to cultured liver cells. Free Radic Biol Med. 1998;24(7–8):1316–1323. doi:10.1016/S0891-5849(97)00456-5
  • Chou H, Chen C. Hyperoxia induces ferroptosis and impairs lung development in neonatal mice. Antioxidants. 2022;11(4):641. doi:10.3390/antiox11040641
  • Zhao J, Li J, Wei D, et al. Liproxstatin-1 alleviates lung transplantation-induced cold ischemia-reperfusion injury by inhibiting ferroptosis. Transplantation. 2023;107(10):2190–2202. doi:10.1097/TP.0000000000004638
  • Bonnell M, Visner G, Zander D, et al. Heme-oxygenase-1 expression correlates with severity of acute cellular rejection in lung transplantation. J Am Coll Surg. 2004;198(6):945–952. doi:10.1016/j.jamcollsurg.2004.01.026
  • Schaefer B, Effenberger M, Zoller H. Iron metabolism in transplantation. Transplant Int. 2014;27(11):1109–1117. doi:10.1111/tri.12374
  • Long M, Mallampalli R, Horowitz J. Pathogenesis of pneumonia and acute lung injury. Clin Sci. 2022;136(10):747–769. doi:10.1042/CS20210879
  • Jain S, Saha P, Syamprasad N, et al. Targeting TLR4/3 using chlorogenic acid ameliorates LPS+POLY I:C-induced acute respiratory distress syndrome via alleviating oxidative stress-mediated NLRP3/NF-κB axis. Clin Sci. 2023;137(10):785–805. doi:10.1042/CS20220625
  • Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 2020;27(2):662–675. doi:10.1038/s41418-019-0380-z
  • Li X, Xiong W, Wang Y, Li Y, Cheng X, Liu W. p53 activates the lipoxygenase activity of ALOX15B via inhibiting SLC7A11 to induce ferroptosis in bladder cancer cells. Lab investigat. 2023;103(5):100058. doi:10.1016/j.labinv.2022.100058
  • Huang C, Wang J, Liu H, et al. Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med. 2022;20(1):148. doi:10.1186/s12916-022-02352-x
  • Yang Y, Ma Y, Li Q, et al. STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death Dis. 2022;13(6):530. doi:10.1038/s41419-022-04971-x
  • Dong H, Qiang Z, Chai D, et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging. 2020;12(13):12943–12959. doi:10.18632/aging.103378
  • Wang S, Song Y, Xu F, et al. Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury. Cell Signal. 2023;108:110698. doi:10.1016/j.cellsig.2023.110698
  • Liu P, Feng Y, Li H, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett. 2020;25(1):10. doi:10.1186/s11658-020-00205-0
  • Li J, Lu K, Sun F, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med. 2021;19(1):96. doi:10.1186/s12967-021-02745-1
  • Liu P, Zhao D, Pan Z, Tang W, Chen H, Hu K. Identification and validation of ferroptosis-related hub genes in obstructive sleep apnea syndrome. Front Neurol. 2023;14:1130378. doi:10.3389/fneur.2023.1130378
  • Chen L, Wu R, Huang Y, et al. The role of ferroptosis in chronic intermittent hypoxia-induced liver injury in rats. Sleep Breath. 2020;24(4):1767–1773. doi:10.1007/s11325-020-02091-4
  • Gong Z, Liu Z, Du K, et al. Potential of β-elemene induced ferroptosis through Pole2-mediated p53 and PI3K/AKT signaling in lung cancer cells. Chem Biol Interact. 2022;365:110088. doi:10.1016/j.cbi.2022.110088
  • Li Y, Yan H, Xu X, Liu H, Wu C, Zhao L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 2020;19(1):323–333. doi:10.3892/ol.2019.11066
  • Zhou C, Yu T, Zhu R, et al. Timosaponin AIII promotes non-small-cell lung cancer ferroptosis through targeting and facilitating HSP90 mediated GPX4 ubiquitination and degradation. Int J Bio Sci. 2023;19(5):1471–1489. doi:10.7150/ijbs.77979
  • Alvarez S, Sviderskiy V, Terzi E, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017;551(7682):639–643. doi:10.1038/nature24637
  • Tan X, Huang X, Niu B, Guo X, Lei X, Qu B. Targeting GSTP1-dependent ferroptosis in lung cancer radiotherapy: existing evidence and future directions. Front Mol Biosci. 2022;9:1102158. doi:10.3389/fmolb.2022.1102158