35
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Hyperuricemia Increases the Risk of Postoperative Recurrence in Chinese Patients with Chronic Rhinosinusitis

, , , ORCID Icon &
Pages 2669-2679 | Received 31 Dec 2023, Accepted 18 Apr 2024, Published online: 30 Apr 2024

References

  • Xu X, Seet JE, Yap QV, et al. Latent class analysis of structured histopathology in prognosticating surgical outcomes of chronic rhinosinusitis with nasal polyps in Singapore. Rhinology. 2023;61(4):358–367. doi:10.4193/Rhin22.455
  • Sedaghat AR, Singerman KM, Phillips KM. Discordance of chronic rhinosinusitis disease control between EPOS guidelines and patient perspectives identifies utility of patient-rated control assessment. Rhinology. 2022;60(6):444–452. doi:10.4193/Rhin22.160
  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6(1):86. doi:10.1038/s41572-020-00218-1
  • Fokkens WJ, Viskens AS, Backer V, et al. EPOS/EUFOREA update on indication and evaluation of biologics in chronic rhinosinusitis with nasal polyps 2023. Rhinology. 2023;61(3):194–202. doi:10.4193/Rhin22.489
  • Sedaghat AR, Fokkens WJ, Lund VJ, et al. Consensus criteria for chronic rhinosinusitis disease control: an international Delphi Study. Rhinology. 2023;61(6):519–530. doi:10.4193/Rhin23.335
  • de Loos DAE D, Cornet ME, Hopkins C, Fokkens WJ, Reitsma S. Measuring control of disease in chronic rhinosinusitis; assessing the correlation between SinoNasal Outcome Test-22 and visual analogue scale item scores. Rhinology. 2023;61(1):39–46. doi:10.4193/Rhin21.275
  • Hellings PW, Fokkens WJ, Orlandi R, et al. The EUFOREA pocket guide for chronic rhinosinusitis. Rhinology. 2023;61(1):85–89. doi:10.4193/Rhin22.344
  • Wu PW, Chiu CH, Huang YL, et al. Tissue eosinophilia and computed tomography features in paediatric chronic rhinosinusitis with nasal polyps requiring revision surgery. Rhinology. 2023;61(3):348–357. doi:10.4193/Rhin22.435
  • Ramkumar SP, Marks L, Lal D, Marino MJ. Outcomes of limited versus extensive surgery for chronic rhinosinusitis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2023;13(11):2096–2100. doi:10.1002/alr.23178
  • Khanwalkar A, Chan E, Roozdar P, et al. Tranexamic acid does not significantly lower postoperative bleeding after endoscopic sinus and nasal surgery. Int Forum Allergy Rhinol. 2023;13(9):1584–1591. doi:10.1002/alr.23127
  • Xie S, Zhang C, Xie Z, Zhang J, Zhang H, Jiang W. Serum metabolomics identifies uric acid as a possible novel biomarker for predicting recurrence of chronic rhinosinusitis with nasal polyps. Rhinology. 2023;61(6):541–551. doi:10.4193/Rhin23.236
  • Jo S, Lee SH, Jo HR, et al. Eosinophil-derived TGFβ1 controls the new bone formation in chronic rhinosinusitis with nasal polyps. Rhinology. 2023;61(4):338–347. doi:10.4193/Rhin22.439
  • Kim DH, Han JS, Kim GJ, Basurrah MA, Hwang SH. Clinical predictors of polyps recurring in patients with chronic rhinosinusitis and nasal polyps: a systematic review and meta-analysis. Rhinology. 2023;61(6):482–497. doi:10.4193/Rhin23.136
  • Bai J, Huang JH, Price CPE, et al. Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022;150(2):352–361.e357. doi:10.1016/j.jaci.2022.02.029
  • Sella GCP, Tamashiro E, Sella JA, et al. Asthma is the dominant factor for recurrence in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2020;8(1):302–309. doi:10.1016/j.jaip.2019.08.007
  • Hong SN, Kim YS, Cha H, et al. Endotype-related recurrence pattern of chronic rhinosinusitis in revision functional endoscopic sinus surgery. Auris Nasus Larynx. 2022;49(2):215–221. doi:10.1016/j.anl.2021.07.010
  • Tao JL, Chen YZ, Dai QG, et al. Urine metabolic profiles in paediatric asthma. Respirology. 2019;24(6):572–581. doi:10.1111/resp.13479
  • Wang H, Jia Y, Yi M, Li Y, Chen O. High serum uric acid was a risk factor for incident asthma: an open cohort study. Risk Manag Healthc Policy. 2020;13:2337–2346. doi:10.2147/RMHP.S277463
  • Mei Y, Dong B, Geng Z, Xu L. Excess uric acid induces gouty nephropathy through crystal formation: a review of recent insights. Front Endocrinol. 2022;13:911968. doi:10.3389/fendo.2022.911968
  • Ramos GK, Goldfarb DS. Update on uric acid and the kidney. Curr Rheumatol Rep. 2022;24(5):132–138. doi:10.1007/s11926-022-01069-3
  • Calich AL, Borba EF, Ugolini-Lopes MR, da Rocha LF, Bonfá E, Fuller R. Serum uric acid levels are associated with lupus nephritis in patients with normal renal function. Clin Rheumatol. 2018;37(5):1223–1228. doi:10.1007/s10067-018-3991-8
  • Lv Q, Xu D, Zhang X, et al. Association of hyperuricemia with immune disorders and intestinal barrier dysfunction. Front Physiol. 2020;11:524236. doi:10.3389/fphys.2020.524236
  • Dos Santos M, Veronese FV, Moresco RN. Uric acid and kidney damage in systemic lupus erythematosus. Clin Chim Acta. 2020;508:197–205. doi:10.1016/j.cca.2020.05.034
  • Wang X, Liu X, Qi Y, et al. High level of serum uric acid induced monocyte inflammation is related to coronary calcium deposition in the middle-aged and elder population of China: a five-year prospective cohort study. J Inflamm Res. 2022;15:1859–1872. doi:10.2147/JIR.S353883
  • Lv Q, Xu D, Ma J, et al. Uric acid drives intestinal barrier dysfunction through TSPO-mediated NLRP3 inflammasome activation. Inflamm Res. 2021;70(1):127–137. doi:10.1007/s00011-020-01409-y
  • Fokkens WJ, Lund VJ, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012;23:3 p preceding table of contents, 1–298.
  • Qi S, Yan B, Liu C, Wang C, Zhang L. Predictive significance of Charcot-Leyden Crystal mRNA levels in nasal brushing for nasal polyp recurrence. Rhinology. 2020;58(2):166–174. doi:10.4193/Rhin19.296
  • Brescia G, Contro G, Giacomelli L, Barion U, Frigo AC, Marioni G. Blood eosinophilic and basophilic trends in recurring and non-recurring eosinophilic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2021;35(3):296–301. doi:10.1177/1945892420953960
  • Xue B, Johnson AK. Sensitization of hypertension: the impact of earlier life challenges: excellence award for hypertension research 2021. Hypertension. 2022;80(1):101161hypertensionaha12218550.
  • Lambrinoudaki I, Paschou SA, Armeni E, Goulis DG. The interplay between diabetes mellitus and menopause: clinical implications. Nat Rev Endocrinol. 2022;18(10):608–622. doi:10.1038/s41574-022-00708-0
  • Sun F, Zhao W, Shen H, et al. Design of smart aggregates: towards rapid clinical diagnosis of hyperlipidemia in human blood. Adv Mater. 2022;34(49):e2207671. doi:10.1002/adma.202207671
  • Crawley WT, Jungels CG, Stenmark KR, Fini MA. U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox Biol. 2022;51:102271. doi:10.1016/j.redox.2022.102271
  • Yilmaz G, Eyigor H, Gur OE, et al. The role of TAS2R38 genotype in surgical outcomes and culturable bacteria in chronic rhinosinusitis with or without nasal polyps. Rhinology. 2023;61(1):54–60. doi:10.4193/Rhin22.118
  • Xie S, Jiang S, Fan R, et al. Elevated body mass index increased the risk of recurrence in Chinese patients with chronic rhinosinusitis. Am J Otolaryngol. 2023;44(4):103841. doi:10.1016/j.amjoto.2023.103841
  • Veloso-Teles R, Cerejeira R. Endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps: clinical outcome and predictive factors of recurrence. Am J Rhinol Allergy. 2017;31(1):56–62. doi:10.2500/ajra.2017.31.4402
  • Bayer K, Hamidovic S, Brkic FF, Besser G, Mueller CA, Liu DT. Peripheral eosinophil count and eosinophil-to-lymphocyte ratio are associated with revision sinus surgery. Eur Arch Otorhinolaryngol. 2022;280(1):183–190. doi:10.1007/s00405-022-07497-2
  • Lu PC, Lee TJ, Huang CC, Chang PH, Chen YW, Fu CH. Serum eosinophil cationic protein: a prognostic factor for early postoperative recurrence of nasal polyps. Int Forum Allergy Rhinol. 2021;11(4):766–772. doi:10.1002/alr.22664
  • Oka A, Ninomiya T, Fujiwara T, et al. Serum IgG4 as a biomarker reflecting pathophysiology and post-operative recurrence in chronic rhinosinusitis. Allergol Int. 2020;69(3):417–423. doi:10.1016/j.alit.2019.12.004
  • Xie S, Zhang H, Liu Y, et al. The role of serum metabolomics in distinguishing chronic rhinosinusitis with nasal polyp phenotypes. Front Mol Biosci. 2020;7:593976. doi:10.3389/fmolb.2020.593976
  • Li JX, Wang ZZ, Zhai GT, et al. Untargeted metabolomic profiling identifies disease-specific and outcome-related signatures in chronic rhinosinusitis. J Allergy Clin Immunol. 2022;150(3):727–735.e726. doi:10.1016/j.jaci.2022.04.006
  • Zhu KZ, He C, Li Z, et al. Development and multicenter validation of a novel radiomics-based model for identifying eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2023;61(2):132–143. doi:10.4193/Rhin22.361
  • Porras-Gonzalez C, Palacios-Garcia JM, Sanchez-Gomez S, et al. Transcriptional analysis of nasal polyps fibroblasts reveals a new source of pro-inflammatory signaling in CRSwNP. Rhinology. 2023;61(2):180–189. doi:10.4193/Rhin22.309
  • Fonseca W, Malinczak CA, Schuler CF, et al. Uric acid pathway activation during respiratory virus infection promotes Th2 immune response via innate cytokine production and ILC2 accumulation. Mucosal Immunol. 2020;13(4):691–701. doi:10.1038/s41385-020-0264-z
  • Liu X, Li Y, Li Z, et al. A novel IgG1 monoclonal antibody against xanthine oxidase alleviates inflammation induced by potassium oxonate in mice. Int J Biol Macromol. 2018;112:537–547. doi:10.1016/j.ijbiomac.2018.01.171
  • Schuler C, Malinczak CA, Best SKK, et al. Inhibition of uric acid or IL-1β ameliorates respiratory syncytial virus immunopathology and development of asthma. Allergy. 2020;75(9):2279–2293. doi:10.1111/all.14310