110
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies

, , & ORCID Icon
Pages 2103-2118 | Received 02 Jan 2024, Accepted 19 Mar 2024, Published online: 05 Apr 2024

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabet Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Federation ID. IDF Diabetes Atlas. 10th ed. DiabetesAtlas; 2021.
  • Akdağ M, Özçelik AB, Demir Y, Beydemir Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J Mol Struct. 2022;1258:132675. doi:10.1016/j.molstruc.2022.132675
  • Sever B, Altıntop MD, Demir Y, et al. Identification of a new class of potent aldose reductase inhibitors: design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact. 2021;345:109576. doi:10.1016/j.cbi.2021.109576
  • Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ. Incidence of chronic kidney disease among people with diabetes: a systematic review of observational studies. Diabet Med. 2017;34(7):887–901. doi:10.1111/dme.13324
  • Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(Suppl 1):3–15. doi:10.1111/dom.14007
  • Cheng HT, Xu X, Lim PS, Hung KY. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000-2015. Diabetes Care. 2021;44(1):89–97. doi:10.2337/dc20-1913
  • Sever B, Altıntop MD, Demir Y, et al. An extensive research on aldose reductase inhibitory effects of new 4h-1,2,4-triazole derivatives. J Mol Struct. 2021;1224:129446. doi:10.1016/j.molstruc.2020.129446
  • Demir Y, Ceylan H, Türkeş C, Beydemir Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct Dyn. 2022;40(22):12008–12021. doi:10.1080/07391102.2021.1967195
  • Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–2045. doi:10.2215/CJN.11491116
  • DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of sglt2 inhibitors. Nat Rev Nephrol. 2021;17(5):319–334. doi:10.1038/s41581-021-00393-8
  • Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102(2):248–260. doi:10.1016/j.kint.2022.05.012
  • Gupta S, Dominguez M, Golestaneh L. Diabetic kidney disease: an update. Med Clin North Am. 2023;107(4):689–705. doi:10.1016/j.mcna.2023.03.004
  • Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem. 2020;102:104110. doi:10.1016/j.bioorg.2020.104110
  • Demir Y, Tokalı FS, Kalay E, et al. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors. Molecular Diversity. 2023;27(4):1713–1733. doi:10.1007/s11030-022-10526-1
  • Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi:10.1155/2021/1497449
  • Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016;12(1):13–26. doi:10.1038/nrneph.2015.175
  • Veiras LC, Bernstein EA, Cao D, et al. Tubular il-1beta induces salt sensitivity in diabetes by activating renal macrophages. Circ Res. 2022;131:59–73. doi:10.1161/CIRCRESAHA.121.320239
  • Jiang WJ, Xu CT, Du CL, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics. 2022;12:324–339. doi:10.7150/thno.63735
  • Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3 H)-one ring: synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev. Res. 2023;84(2):275–295. doi:10.1002/ddr.22031
  • Ertano BY, Demir Y, Nural Y, Erdoğan O. Investigation of the effect of acylthiourea derivatives on diabetes-associated enzymes. ChemistrySelect. 2022;7(46):e202204149. doi:10.1002/slct.202204149
  • Zheng Z, Zheng F. Immune cells and inflammation in diabetic nephropathy. J Diabetes Res. 2016;2016:1841690. doi:10.1155/2016/1841690
  • Kong L, Andrikopoulos S, MacIsaac RJ, et al. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig. 2022;13:213–226. doi:10.1111/jdi.13725
  • Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int. 2004;65(1):116–128. doi:10.1111/j.1523-1755.2004.00367.x
  • Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial Transplant. 2004;19(12):2987–2996. doi:10.1093/ndt/gfh441
  • Ma T, Li X, Zhu Y, et al. Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Front Immunol. 2022;13:835879. doi:10.3389/fimmu.2022.835879
  • Kim SM, Lee SH, Lee A, et al. Targeting t helper 17 by mycophenolate mofetil attenuates diabetic nephropathy progression. Transl Res. 2015;166:375–383. doi:10.1016/j.trsl.2015.04.013
  • Lavoz C, Matus YS, Orejudo M, et al. Interleukin-17a blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int. 2019;95(6):1418–1432. doi:10.1016/j.kint.2018.12.031
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–273. doi:10.1128/CMR.00046-08
  • McComb S, Thiriot A, Akache B, Krishnan L, Stark F. Introduction to the immune system. Methods Mol Biol. 2019;2024:1–24.
  • Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206–222. doi:10.1038/s41581-019-0234-4
  • Fortpied J, Vertommen D, Van Schaftingen E. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. Diabetes Metab Res Rev. 2010;26(4):254–260. doi:10.1002/dmrr.1079
  • Flyvbjerg A. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol. 2017;13(5):311–318. doi:10.1038/nrneph.2017.31
  • Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH. Aberrant recruitment and activation of t cells in diabetic nephropathy. Am J Nephrol. 2012;35(2):164–174. doi:10.1159/000334928
  • Ryba-Stanislawowska M, Skrzypkowska M, Mysliwiec M, Mysliwska J. Loss of the balance between cd4(+)foxp3(+) regulatory t cells and cd4(+)il17a(+) th17 cells in patients with type 1 diabetes. Hum Immunol. 2013;74:701–707. doi:10.1016/j.humimm.2013.01.024
  • Klessens CQF, Zandbergen M, Wolterbeek R, et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant. 2017;32:1322–1329. doi:10.1093/ndt/gfw260
  • Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15:144–158. doi:10.1038/s41581-019-0110-2
  • Li HD, You YK, Shao BY, et al. Roles and crosstalks of macrophages in diabetic nephropathy. Front Immunol. 2022;13:1015142. doi:10.3389/fimmu.2022.1015142
  • Lv LL, Tang PM, Li CJ, et al. The pattern recognition receptor, mincle, is essential for maintaining the m1 macrophage phenotype in acute renal inflammation. Kidney Int. 2017;91:587–602. doi:10.1016/j.kint.2016.10.020
  • Meng XM, Tang PM, Li J, Lan HY. Macrophage phenotype in kidney injury and repair. Kidney Dis. 2015;1:138–146. doi:10.1159/000431214
  • Zhang X, Yang Y, Zhao Y. Macrophage phenotype and its relationship with renal function in human diabetic nephropathy. PLoS One. 2019;14(9):e0221991. doi:10.1371/journal.pone.0221991
  • Ji L, Chen Y, Wang H, et al. Overexpression of sirt6 promotes m2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int J Oncol. 2019;55(1):103–115. doi:10.3892/ijo.2019.4800
  • Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The role of the nlrp3 inflammasome in mediating glomerular and tubular injury in diabetic nephropathy. Front Physiol. 2022;13:907504. doi:10.3389/fphys.2022.907504
  • Hou Q, Kan S, Wang Z, et al. Inhibition of hdac6 with cay10603 ameliorates diabetic kidney disease by suppressing nlrp3 inflammasome. Front Pharmacol. 2022;13:938391. doi:10.3389/fphar.2022.938391
  • Zhao J, Chen J, Li YY, Xia LL, Wu YG. Bruton’s tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via nlrp3 inflammasome activation. Int J Mol Med. 2021;47(4):48. doi:10.3892/ijmm.2021.4881
  • Fan Z, Wang Y, Xu X, Wu Y. Inhibitor of bruton’s tyrosine kinases, PCI-32765, decreases pro-inflammatory mediators’ production in high glucose-induced macrophages. Int Immunopharmacol. 2018;58:145–153. doi:10.1016/j.intimp.2018.03.019
  • Choi SY, Lim SW, Salimi S, et al. Tonicity-responsive enhancer-binding protein mediates hyperglycemia-induced inflammation and vascular and renal injury. J Am Soc Nephrol. 2018;29(2):492–504. doi:10.1681/ASN.2017070718
  • Bus P, Pierneef L, Bor R, et al. Apolipoprotein c-i plays a role in the pathogenesis of glomerulosclerosis. J Pathol. 2017;241(5):589–599. doi:10.1002/path.4859
  • Nitta T, Kanoh H, Inamori KI, Suzuki A, Takahashi T, Inokuchi JI. Globo-series glycosphingolipids enhance toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. Glycobiology. 2019;29:260–268. doi:10.1093/glycob/cwy105
  • Ma Y, Cai F, Huang X, et al. Mannose-binding lectin activates the nuclear factor-kappab and renal inflammation in the progression of diabetic nephropathy. FASEB J. 2022;36:e22227. doi:10.1096/fj.202101852R
  • Menzies RI, Booth JWR, Mullins JJ, et al. Hyperglycemia-induced renal p2x7 receptor activation enhances diabetes-related injury. EBioMedicine. 2017;19:73–83. doi:10.1016/j.ebiom.2017.04.011
  • Goldberg R, Rubinstein AM, Gil N, et al. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes. 2014;63(12):4302–4313. doi:10.2337/db14-0001
  • Yu S, Cheng Y, Li B, et al. M1 macrophages accelerate renal glomerular endothelial cell senescence through reactive oxygen species accumulation in streptozotocin-induced diabetic mice. Int Immunopharmacol. 2020;81:106294. doi:10.1016/j.intimp.2020.106294
  • Nishad R, Mukhi D, Kethavath S, et al. Podocyte derived tnf-alpha mediates monocyte differentiation and contributes to glomerular injury. FASEB J. 2022;36:e22622.
  • Haruhara K, Suzuki T, Wakui H, et al. Deficiency of the kidney tubular angiotensin ii type1 receptor-associated protein atrap exacerbates streptozotocin-induced diabetic glomerular injury via reducing protective macrophage polarization. Kidney Int. 2022;101(5):912–928. doi:10.1016/j.kint.2022.01.031
  • Yang H, Xie T, Li D, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the nf-kappab/tnf-alpha pathway. Mol Metab. 2019;23:24–36. doi:10.1016/j.molmet.2019.02.007
  • Ma Y, Chen Y, Xu H, Du N. The influence of angiopoietin-like protein 3 on macrophages polarization and its effect on the podocyte emt in diabetic nephropathy. Front Immunol. 2023;14:1228399. doi:10.3389/fimmu.2023.1228399
  • Lv LL, Feng Y, Wu M, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes m1 macrophage activation in kidney injury. Cell Death Differ. 2020;27:210–226. doi:10.1038/s41418-019-0349-y
  • Ding X, Jing N, Shen A, et al. Mir-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating a20. J Endocrinol Invest. 2021;44(6):1175–1184. doi:10.1007/s40618-020-01401-7
  • Jia Y, Chen J, Zheng Z, et al. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing hif-1alpha in diabetic kidney disease. Mol Med. 2022;28(1):95. doi:10.1186/s10020-022-00525-1
  • Zhao J, Chen J, Zhu W, Qi XM, Wu YG. Exosomal miR −7002-5p derived from high glucose-induced macrophages suppresses autophagy in tubular epithelial cells by targeting Atg9b. FASEB J. 2022;36(9):e22501. doi:10.1096/fj.202200550RR
  • Liu Y, Li X, Zhao M, et al. Macrophage-derived exosomes promote activation of nlrp3 inflammasome and autophagy deficiency of mesangial cells in diabetic nephropathy. Life Sci. 2023;330:121991. doi:10.1016/j.lfs.2023.121991
  • Liu JL, Zhang L, Huang Y, et al. Epsin1-mediated exosomal sorting of dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy. Mol Ther. 2023;31(5):1451–1467. doi:10.1016/j.ymthe.2023.03.027
  • Wang Z, Sun W, Li R, Liu Y. miRNA-93-5p in exosomes derived from m2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting toll-like receptor 4. Bioengineered. 2022;13(3):7683–7696. doi:10.1080/21655979.2021.2023794
  • Huang H, Liu H, Tang J, et al. M2 macrophage-derived exosomal miR −25-3p improves high glucose-induced podocytes injury through activation autophagy via inhibiting DUSP1 expression. IUBMB Life. 2020;72(12):2651–2662. doi:10.1002/iub.2393
  • Kaminski H, Couzi L, Eberl M. Unconventional t cells and kidney disease. Nat Rev Nephrol. 2021;17(12):795–813. doi:10.1038/s41581-021-00466-8
  • Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory t cells in tissues. J Immunol. 2012;188(10):4866–4875. doi:10.4049/jimmunol.1200402
  • Forbes JM, McCarthy DA, Kassianos AJ, et al. T-cell expression and release of kidney injury molecule-1 in response to glucose variations initiates kidney injury in early diabetes. Diabetes. 2021;70(8):1754–1766. doi:10.2337/db20-1081
  • Zhang N, Tai J, Qu Z, et al. Increased CD4 + CXCR5 + T follicular helper cells in diabetic nephropathy. Autoimmunity. 2016;49(6):405–413. doi:10.1080/08916934.2016.1196677
  • Lei L, Cui L, Mao Y, et al. Augmented cd25 and cd69 expression on circulating cd8+ t cells in type 2 diabetes mellitus with albuminuria. Diabetes Metab. 2017;43(4):382–384. doi:10.1016/j.diabet.2016.10.002
  • Lampropoulou IT, Stangou M, Sarafidis P, et al. Tnf-alpha pathway and t-cell immunity are activated early during the development of diabetic nephropathy in type ii diabetes mellitus. Clin Immunol. 2020;215:108423. doi:10.1016/j.clim.2020.108423
  • Feng Y, Zhong X, Ni HF, et al. Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy. J Transl Med. 2021;19:355. doi:10.1186/s12967-021-03030-x
  • Jin J, Wang L, Liu Y, et al. Depiction of immune heterogeneity of peripheral blood from patients with type ii diabetic nephropathy based on mass cytometry. Front Endocrinol. 2022;13:1018608. doi:10.3389/fendo.2022.1018608
  • Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014;10(9):493–503. doi:10.1038/nrneph.2014.114
  • Gharaie Fathabad S, Kurzhagen JT, Sadasivam M, et al. T lymphocytes in acute kidney injury and repair. Semin Nephrol. 2020;40(2):114–125. doi:10.1016/j.semnephrol.2020.01.003
  • Liu Y, Lv Y, Zhang T, et al. T cells and their products in diabetic kidney disease. Front Immunol. 2023;14:1084448. doi:10.3389/fimmu.2023.1084448
  • Nastase MV, Zeng-Brouwers J, Beckmann J, et al. Biglycan, a novel trigger of th1 and th17 cell recruitment into the kidney. Matrix Biol. 2018;68-69:293–317. doi:10.1016/j.matbio.2017.12.002
  • Yu H, Cui S, Mei Y, et al. Mesangial cells exhibit features of antigen-presenting cells and activate cd4+ t cell responses. J Immunol Res. 2019;2019:2121849. doi:10.1155/2019/2121849
  • Li L, Tang W, Zhang Y, et al. Targeting tissue-resident memory cd8(+) t cells in the kidney is a potential therapeutic strategy to ameliorate podocyte injury and glomerulosclerosis. Mol Ther. 2022;30(8):2746–2759. doi:10.1016/j.ymthe.2022.04.024
  • Kuo HL, Huang CC, Lin TY, Lin CY. Il-17 and cd40 ligand synergistically stimulate the chronicity of diabetic nephropathy. Nephrol Dial Transplant. 2018;33(2):248–256. doi:10.1093/ndt/gfw397
  • Balakumar P, Reddy J, Singh M. Do resident renal mast cells play a role in the pathogenesis of diabetic nephropathy? Mol Cell Biochem. 2009;330(1–2):187–192. doi:10.1007/s11010-009-0132-3
  • Zheng JM, Yao GH, Cheng Z, Wang R, Liu ZH. Pathogenic role of mast cells in the development of diabetic nephropathy: a study of patients at different stages of the disease. Diabetologia. 2012;55(3):801–811. doi:10.1007/s00125-011-2391-2
  • de Morais RB, Do Couto Muniz VP, Nunes Costa E, et al. Mast cell population in the development of diabetic nephropathy: effects of renin angiotensin system inhibition. Biomed Pharmacother. 2018;107:1115–1118. doi:10.1016/j.biopha.2018.08.066
  • Yin DD, Luo JH, Zhao ZY, Liao YJ, Li Y. Tranilast prevents renal interstitial fibrosis by blocking mast cell infiltration in a rat model of diabetic kidney disease. Mol Med Rep. 2018;17(5):7356–7364. doi:10.3892/mmr.2018.8776
  • Fan Z, Gao Y, Jiang N, Zhang F, Liu S, Li Q. Immune-related serpina3 as a biomarker involved in diabetic nephropathy renal tubular injury. Front Immunol. 2022;13:979995. doi:10.3389/fimmu.2022.979995
  • LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–1580. doi:10.1182/blood-2008-02-078071
  • Nicoloff G, Blazhev A, Petrova C, Christova P. Circulating immune complexes among diabetic children. Clin Dev Immunol. 2004;11(1):61–66. doi:10.1080/10446670410001670517
  • Xiao X, Ma B, Dong B, et al. Cellular and humoral immune responses in the early stages of diabetic nephropathy in nod mice. J Autoimmun. 2009;32(2):85–93. doi:10.1016/j.jaut.2008.12.003
  • Abdelsamie SA, Li Y, Huang Y, et al. Oxidized LDL immune complexes stimulate collagen iv production in mesangial cells via fc gamma receptors I and III. Clin Immunol. 2011;139(3):258–266. doi:10.1016/j.clim.2011.01.016
  • Smith MJ, Simmons KM, Cambier JC. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat Rev Nephrol. 2017;13(11):712–720. doi:10.1038/nrneph.2017.138
  • Li T, Yu Z, Qu Z, Zhang N, Crew R, Jiang Y. Decreased number of cd19(+)cd24(hi)cd38(hi) regulatory b cells in diabetic nephropathy. Mol Immunol. 2019;112:233–239. doi:10.1016/j.molimm.2019.05.014
  • Huang W, Huang J, Liu Q, et al. Neutrophil-lymphocyte ratio is a reliable predictive marker for early-stage diabetic nephropathy. Clin Endocrinol (Oxf). 2015;82:229–233. doi:10.1111/cen.12576
  • Ciray H, Aksoy AH, Ulu N, Cizmecioglu A, Gaipov A, Solak Y. Nephropathy, but not angiographically proven retinopathy, is associated with neutrophil to lymphocyte ratio in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2015;123(05):267–271. doi:10.1055/s-0035-1547257
  • Wang Y, Peng X, Hu J, et al. Low-dose colchicine in type 2 diabetes with microalbuminuria: a double-blind randomized clinical trial. J Diabetes. 2021;13(10):827–836. doi:10.1111/1753-0407.13174
  • Wang Y, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–213. doi:10.1083/jcb.200806072
  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–691. doi:10.1083/jcb.201006052
  • Zheng F, Ma L, Li X, et al. Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 2022;71(12):2739–2750. doi:10.2337/db22-0153
  • Gupta A, Singh K, Fatima S, et al. Neutrophil extracellular traps promote nlrp3 inflammasome activation and glomerular endothelial dysfunction in diabetic kidney disease. Nutrients;2022. 14. doi:10.3390/nu15010014
  • Kunder M, Lakshmaiah V, Moideen Kutty AV. Selective decrease in alpha1-antitrypsin levels in diabetic retinopathy: could the levels of it be playing a role in the pathophysiology of diabetic retinopathy? Indian J Med Res. 2022;156:104–110.
  • Schuijs MJ, Halim TYF. Group 2 innate lymphocytes at the interface between innate and adaptive immunity. Ann N Y Acad Sci. 2018;1417(1):87–103. doi:10.1111/nyas.13604
  • Zhu J. T helper 2 (th2) cell differentiation, type 2 innate lymphoid cell (ilc2) development and regulation of interleukin-4 (il-4) and il-13 production. Cytokine. 2015;75(1):14–24. doi:10.1016/j.cyto.2015.05.010
  • Doherty TA, Broide DH. Group 2 innate lymphoid cells: new players in human allergic diseases. J Investig Allergol Clin Immunol. 2015;25:1–11.
  • Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev. 2018;42:27–36. doi:10.1016/j.cytogfr.2018.07.002
  • Lu P, Ji X, Wan J, Xu H. Activity of group 2 innate lymphoid cells is associated with chronic inflammation and dysregulated metabolic homoeostasis in type 2 diabetic nephropathy. Scand J Immunol. 2018;87(2):99–107. doi:10.1111/sji.12637
  • Liu C, Qin L, Ding J, et al. Group 2 innate lymphoid cells participate in renal fibrosis in diabetic kidney disease partly via TGF-β1 signal pathway. J Diabetes Res. 2019;2019:8512028. doi:10.1155/2019/8512028
  • Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14(8):479–492. doi:10.1038/s41581-018-0021-7
  • Chen J, Luo P, Wang C, et al.Integrated single-cell transcriptomics and proteomics reveal cellular-specific responses and microenvironment remodeling in aristolochic acid nephropathy. JCI Insight. 2022;(16):7. doi:10.1172/jci.insight.157360
  • Wu H, Kirita Y, Donnelly EL, Humphreys BD. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol. 2019;30(1):23–32. doi:10.1681/ASN.2018090912
  • Wilson PC, Wu H, Kirita Y, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A. 2019;116(39):19619–19625. doi:10.1073/pnas.1908706116
  • Fu J, Akat KM, Sun Z, et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J Am Soc Nephrol. 2019;30(4):533–545. doi:10.1681/ASN.2018090896
  • Fu J, Sun Z, Wang X, et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int. 2022;102(6):1291–1304. doi:10.1016/j.kint.2022.08.026
  • Wu C, Tao Y, Li N, et al. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys. J Cell Commun Signal. 2023;17(1):169–188. doi:10.1007/s12079-022-00685-z
  • Wu H, Humphreys BD. Immune cell heterogeneity in a mouse model of diabetic kidney disease. Kidney Int. 2022;102(6):1215–1216. doi:10.1016/j.kint.2022.09.007
  • Gottesfeld JM, Carey MF. Introduction to the thematic minireview series: chromatin and transcription. J Biol Chem. 2018;293(36):13775–13777. doi:10.1074/jbc.TM118.004544
  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–1218. doi:10.1038/nmeth.2688
  • Kuppe C, Perales-Paton J, Saez-Rodriguez J, Kramann R. Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrol Dial Transplant. 2022;37(4):628–637. doi:10.1093/ndt/gfaa233
  • Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–868. doi:10.1038/nmeth.4380
  • Yao X, Shen H, Cao F, et al. Bioinformatics analysis reveals crosstalk among platelets, immune cells, and the glomerulus that may play an important role in the development of diabetic nephropathy. Front Med. 2021;8:657918. doi:10.3389/fmed.2021.657918
  • Zhou W, Liu Y, Hu Q, Zhou J, Lin H. The landscape of immune cell infiltration in the glomerulus of diabetic nephropathy: evidence based on bioinformatics. BMC Nephrol. 2022;23(1):303. doi:10.1186/s12882-022-02906-4
  • Ming J, Sana S, Deng X. Identification of copper-related biomarkers and potential molecule mechanism in diabetic nephropathy. Front Endocrinol. 2022;13:978601. doi:10.3389/fendo.2022.978601
  • Fu S, Cheng Y, Wang X, et al. Identification of diagnostic gene biomarkers and immune infiltration in patients with diabetic kidney disease using machine learning strategies and bioinformatic analysis. Front Med. 2022;9:918657. doi:10.3389/fmed.2022.918657
  • Jia Y, Xu H, Yu Q, Tan L, Xiong Z. Identification and verification of vascular cell adhesion protein 1 as an immune-related hub gene associated with the tubulointerstitial injury in diabetic kidney disease. Bioengineered. 2021;12(1):6655–6673. doi:10.1080/21655979.2021.1976540
  • Ye Z, Zhang Y, Huang N, Chen S, Wu X, Li L. Immune repertoire and evolutionary trajectory analysis in the development of diabetic nephropathy. Front Immunol. 2022;13:1006137. doi:10.3389/fimmu.2022.1006137
  • Li T, Shen K, Li J, Leung SWS, Zhu T, Shi Y. Glomerular endothelial cells are the coordinator in the development of diabetic nephropathy. Front Med. 2021;8:655639. doi:10.3389/fmed.2021.655639
  • Wei Y, Gao X, Li A, Liang M, Jiang Z. Single-nucleus transcriptomic analysis reveals important cell cross-talk in diabetic kidney disease. Front Med. 2021;8:657956. doi:10.3389/fmed.2021.657956
  • Mkm M, Yung S, Chan TM. Mtor inhibition and kidney diseases. Transplantation. 2018;102:S32–S40. doi:10.1097/TP.0000000000001729
  • Lu X, Li L, Suo L, et al. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Front Cell Dev Biol. 2022;10:798316. doi:10.3389/fcell.2022.798316
  • Sur S, Nguyen M, Boada P, Sigdel TK, Sollinger H, Sarwal MM. Fcer1: a novel molecule implicated in the progression of human diabetic kidney disease. Front Immunol. 2021;12:769972. doi:10.3389/fimmu.2021.769972
  • Yu K, Li D, Xu F, et al. Ido1 as a new immune biomarker for diabetic nephropathy and its correlation with immune cell infiltration. Int Immunopharmacol. 2021;94:107446. doi:10.1016/j.intimp.2021.107446
  • Xu Q, Li B, Wang Y, et al. Identification of vcan as hub gene for diabetic kidney disease immune injury using integrated bioinformatics analysis. Front Physiol. 2021;12:651690. doi:10.3389/fphys.2021.651690
  • Chen H, Zhang Z, Zhou L, et al. Identification of ccl19 as a novel immune-related biomarker in diabetic nephropathy. Front Genet. 2022;13:830437. doi:10.3389/fgene.2022.830437
  • Li X, Liu J, Zeng M, et al. Gbp2 promotes m1 macrophage polarization by activating the notch1 signaling pathway in diabetic nephropathy. Front Immunol. 2023;14:1127612. doi:10.3389/fimmu.2023.1127612
  • Zhou M, Lu F, Jiang L, et al. Decoding the intercellular cross-talking between immune cells and renal innate cells in diabetic kidney disease by bioinformatics. J Inflamm Res. 2023;16:3049–3062. doi:10.2147/JIR.S409017
  • Li C, Su F, Zhang L, et al. Identifying potential diagnostic genes for diabetic nephropathy based on hypoxia and immune status. J Inflamm Res. 2021;14:6871–6891. doi:10.2147/JIR.S341032
  • Lu K, Wang L, Fu Y, Li G, Zhang X, Cao M. Bioinformatics analysis identifies immune-related gene signatures and subtypes in diabetic nephropathy. Front Endocrinol. 2022;13:1048139. doi:10.3389/fendo.2022.1048139
  • Zhang X, Chao P, Zhang L, et al. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol. 2023;14:1030198. doi:10.3389/fimmu.2023.1030198
  • Xu M, Zhou H, Hu P, et al. Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by wgcna and machine learning. Front Immunol. 2023;14:1084531. doi:10.3389/fimmu.2023.1084531
  • Chen J, Luo SF, Yuan X, et al. Diabetic kidney disease-predisposing proinflammatory and profibrotic genes identified by weighted gene co-expression network analysis (wgcna). J Cell Biochem. 2022;123(2):481–492. doi:10.1002/jcb.30195
  • Ma J, Li C, Liu T, et al. Identification of markers for diagnosis and treatment of diabetic kidney disease based on the ferroptosis and immune. Oxid Med Cell Longev. 2022;2022:9957172. doi:10.1155/2022/9957172
  • Wang Y, Zhao M, Zhang Y. Identification of fibronectin 1 (fn1) and complement component 3 (c3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Bioengineered. 2021;12(1):5386–5401. doi:10.1080/21655979.2021.1960766
  • Han H, Chen Y, Yang H, et al. Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on machine learning algorithms. Front Endocrinol. 2022;13:876960. doi:10.3389/fendo.2022.876960
  • Zhang H, Hu J, Zhu J, Li Q, Fang L. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Front Endocrinol. 2022;13:1026938. doi:10.3389/fendo.2022.1026938
  • Zhou H, Mu L, Yang Z, Shi Y. Identification of a novel immune landscape signature as effective diagnostic markers related to immune cell infiltration in diabetic nephropathy. Front Immunol. 2023;14:1113212. doi:10.3389/fimmu.2023.1113212