32
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Impact of NLRP3 Inflammasome on Osteoblasts and Osteogenic Differentiation: A Literature Review

, , , &
Pages 2639-2653 | Received 04 Jan 2024, Accepted 24 Apr 2024, Published online: 29 Apr 2024

References

  • Ponzetti M, Rucci N. Osteoblast differentiation and signaling: established concepts and emerging topics. Int J Mol Sci. 2021;22(13):6651. doi:10.3390/ijms22136651
  • Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases. Cells. 2022;11(22):3552. doi:10.3390/cells11223552
  • Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation. 2016;92(1–2):41–51. doi:10.1016/j.diff.2016.02.005
  • Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–923. doi:10.1016/S2213-8587(17)30184-5
  • Liu J, Zhang Y, Wu Y, et al. Delivery of m7G methylated Runx2 mRNA by bone-targeted lipid nanoparticle promotes osteoblastic bone formation in senile osteoporosis. Nano Today. 2024;54:102074. doi:10.1016/j.nantod.2023.102074
  • Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol. 2022;12:908859. doi:10.3389/fcimb.2022.908859
  • Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest. 2019;129(3):1076–1093. doi:10.1172/JCI121561
  • Tamaddon M, Gilja H, Wang L, et al. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic. Biomate Rransl. 2020;1(1):3–17. doi:10.3877/cma.j.issn.2096-112X.2020.01.002
  • Zheng G, Zhao Y, Li Z, et al. GLSP and GLSP-derived triterpenes attenuate atherosclerosis and aortic calcification by stimulating ABCA1/G1-mediated macrophage cholesterol efflux and inactivating RUNX2-mediated VSMC osteogenesis. Theranostics. 2023;13(4):1325–1341. doi:10.7150/thno.80250
  • Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol. 2022;18(4):224–240. doi:10.1038/s41581-021-00513-4
  • Pillai ICL, Li S, Romay M, et al. Cardiac fibroblasts adopt osteogenic fates and can be targeted to attenuate pathological heart calcification. Cell Stem Cell. 2017;20(2):218–232.e215. doi:10.1016/j.stem.2016.10.005
  • Yang F, Liu S, Gu Y, et al. MicroRNA-22 promoted osteogenic differentiation of valvular interstitial cells by inhibiting CAB39 expression during aortic valve calcification. Cell Mol Life Sci. 2022;79(3):146. doi:10.1007/s00018-022-04177-6
  • Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Sig Transd Target Therapy. 2021;6(1):128. doi:10.1038/s41392-021-00507-5
  • Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. doi:10.1038/nrmicro2070
  • Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489. doi:10.1038/s41577-019-0165-0
  • Wang Z, Zhou F, Feng X, et al. FoxO1/NLRP3 inflammasome promotes age-related alveolar bone resorption. J Dent Res. 2023;102(8):919–928. doi:10.1177/00220345231164104
  • Detzen L, Cheat B, Besbes A, et al. NLRP3 is involved in long bone edification and the maturation of osteogenic cells. J Cell Physiol. 2021;236(6):4455–4469. doi:10.1002/jcp.30162
  • Xu L, Zhang L, Wang Z, et al. Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcified Tissue Int. 2018;103(4):400–410. doi:10.1007/s00223-018-0428-y
  • Behera J, Ison J, Voor MJ, Tyagi N. Exercise-linked skeletal irisin ameliorates diabetes-associated osteoporosis by inhibiting the oxidative damage-dependent miR-150-FNDC5/Pyroptosis axis. Diabetes. 2022;71(12):2777–2792. doi:10.2337/db21-0573
  • Lu J, Xie S, Deng Y, Xie X, Liu Y. Blocking the NLRP3 inflammasome reduces osteogenic calcification and M1 macrophage polarization in a mouse model of calcified aortic valve stenosis. Atherosclerosis. 2022;347:28–38. doi:10.1016/j.atherosclerosis.2022.03.005
  • Pham TH, Kim EN, Trang NM, Jeong GS. Gallic acid induces osteoblast differentiation and alleviates inflammatory response through GPR35/GSK3β/β-catenin signaling pathway in human periodontal ligament cells. J Periodontal Res. 2023;59(1):204–219. doi:10.1111/jre.13208
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell. 2002;10(2):417–426. doi:10.1016/S1097-2765(02)00599-3
  • Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–671. doi:10.1038/nature15541
  • Christgen S, Kanneganti TD. Inflammasomes and the fine line between defense and disease. Curr Opinion Immunol. 2020;62:39–44. doi:10.1016/j.coi.2019.11.007
  • Bauernfried S, Hornung V. Human NLRP1: from the shadows to center stage. J Exp Med. 2022;219(1). doi:10.1084/jem.20211405
  • Calabrese L, Fiocco Z, Mellett M, et al. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol. 2024;190(3):305–315. doi:10.1093/bjd/ljad421
  • Wen J, Xuan B, Liu Y, et al. Updating the NLRC4 inflammasome: from bacterial infections to autoimmunity and cancer. Front Immunol. 2021;12:702527. doi:10.3389/fimmu.2021.702527
  • Duncan JA, Canna SW. The NLRC4 inflammasome. Immunol Rev. 2018;281(1):115–123. doi:10.1111/imr.12607
  • Du L, Wang X, Chen S, Guo X. The AIM2 inflammasome: a novel biomarker and target in cardiovascular disease. Pharmacol Res. 2022;186:106533. doi:10.1016/j.phrs.2022.106533
  • Man SM, Karki R, Malireddi RK, et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol. 2015;16(5):467–475. doi:10.1038/ni.3118
  • Chae JJ, Wood G, Richard K, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood. 2008;112(5):1794–1803. doi:10.1182/blood-2008-01-134932
  • Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. The pyrin inflammasome in health and disease. Front Immunol. 2019;10:1745. doi:10.3389/fimmu.2019.01745
  • La Bella S, Di Ludovico A, Di Donato G, et al. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol. 2023;14:1341680. doi:10.3389/fimmu.2023.1341680
  • Magnotti F, Chirita D, Dalmon S, et al. Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism. Cell Rep. 2022;41(2):111472. doi:10.1016/j.celrep.2022.111472
  • Lau R, Hann MM, Ottmann C. Crystal structure and ligandability of the 14-3-3/pyrin interface. Biochem Biophys Res Commun. 2023;651:1–7. doi:10.1016/j.bbrc.2023.02.013
  • Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588–606. doi:10.1038/nrd.2018.97
  • Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411. doi:10.1038/nri3452
  • Xia CY, Guo YX, Lian WW, et al. The NLRP3 inflammasome in depression: potential mechanisms and therapies. Pharmacol Res. 2023;187:106625. doi:10.1016/j.phrs.2022.106625
  • Rashidi M, Wicks IP, Vince JE. Inflammasomes and cell death: common pathways in microparticle diseases. Trends Mol Med. 2020;26(11):1003–1020. doi:10.1016/j.molmed.2020.06.005
  • Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. doi:10.1038/nri.2016.58
  • He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci. 2016;41(12):1012–1021. doi:10.1016/j.tibs.2016.09.002
  • Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Front Immunol. 2023;14:1151185. doi:10.3389/fimmu.2023.1151185
  • Gritsenko A, Yu S, Martin-Sanchez F, et al. Priming is dispensable for NLRP3 inflammasome activation in human monocytes in vitro. Front Immunol. 2020;11:565924. doi:10.3389/fimmu.2020.565924
  • Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New insights on NLRP3 inflammasome: mechanisms of activation, inhibition, and epigenetic regulation. J Neuroimmune Pharmacol. 2024;19(1):7. doi:10.1007/s11481-024-10101-5
  • Song N, Li T. Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol. 2018;9:2305. doi:10.3389/fimmu.2018.02305
  • Zhang Y, Luo L, Xu X, et al. Acetylation is required for full activation of the NLRP3 inflammasome. Nat Commun. 2023;14(1):8396. doi:10.1038/s41467-023-44203-0
  • Xia J, Jiang S, Dong S, Liao Y, Zhou Y. The role of post-translational modifications in regulation of NLRP3 inflammasome activation. Int J Mol Sci. 2023;24(7):6126. doi:10.3390/ijms24076126
  • Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18(9):2114–2127. doi:10.1038/s41423-021-00740-6
  • Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: from mechanism to therapy. Front Immunol. 2022;13:978190. doi:10.3389/fimmu.2022.978190
  • Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi:10.3390/ijms20133328
  • Shi H, Wang Y, Li X, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17(3):250–258. doi:10.1038/ni.3333
  • Yue Z, Zhang X, Gu Y, et al. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol. 2023;13:1309128. doi:10.3389/fcimb.2023.1309128
  • He XF, Li LL, Xian WB, et al. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J Neuroinflammation. 2021;18(1):153. doi:10.1186/s12974-021-02199-8
  • Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020;11(9):776. doi:10.1038/s41419-020-02985-x
  • Chen Y, Yang Q, Lv C, et al. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation. Cell Proliferation. 2021;54(2):e12973. doi:10.1111/cpr.12973
  • Jiang N, An J, Yang K, et al. NLRP3 inflammasome: a new target for prevention and control of osteoporosis? Front Endocrinol. 2021;12:752546. doi:10.3389/fendo.2021.752546
  • Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25(1):629–648. doi:10.1146/annurev.cellbio.042308.113308
  • Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. doi:10.3390/cells9092073
  • Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016;126(2):509–526. doi:10.1172/JCI82585
  • Wagley Y, Chesi A, Acevedo PK, et al. Canonical Notch signaling is required for bone morphogenetic protein-mediated human osteoblast differentiation. Stem Cells. 2020;38(10):1332–1347. doi:10.1002/stem.3245
  • Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349–355. doi:10.1038/nature01660
  • Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694. doi:10.3390/ijms20071694
  • Liu SC, Sun QZ, Qiao XF, et al. LncRNA TUG1 influences osteoblast proliferation and differentiation through the Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):4584–4590. doi:10.26355/eurrev_201906_18035
  • Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36(3):401–414. doi:10.1016/j.immuni.2012.01.009
  • Xian H, Watari K, Sanchez-Lopez E, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022;55(8):1370–1385.e1378. doi:10.1016/j.immuni.2022.06.007
  • Sun D, Peng Y, Ge S, Fu Q. USP1 Inhibits NF-κB/NLRP3 induced pyroptosis through TRAF6 in osteoblastic MC3T3-E1 cells. J Musculoskelet Neuronal Interact. 2022;22(4):536–545.
  • Liu S, Du J, Li D, et al. Oxidative stress induced pyroptosis leads to osteogenic dysfunction of MG63 cells. J Mol Histol. 2020;51(3):221–232. doi:10.1007/s10735-020-09874-9
  • Lei L, Sun J, Han J, Jiang X, Wang Z, Chen L. Interleukin-17 induces pyroptosis in osteoblasts through the NLRP3 inflammasome pathway in vitro. Int Immunopharmacol. 2021;96:107781. doi:10.1016/j.intimp.2021.107781
  • Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–581. doi:10.1016/j.tem.2012.03.008
  • Liang S, Nian Z, Shi K. Inhibition of RIPK1/RIPK3 ameliorates osteoclastogenesis through regulating NLRP3-dependent NF-κB and MAPKs signaling pathways. Biochem Biophys Res Commun. 2020;526(4):1028–1035. doi:10.1016/j.bbrc.2020.03.177
  • Sasso G, Cerri PS, Sasso-Cerri E, Simões MJ, Gil CD, Florencio-Silva R. Possible role of annexin A1/FPR2 pathway in COX2/NLRP3 inflammasome regulation in alveolar bone cells of estrogen-deficient female rats with diabetes mellitus. J Periodontol. 2023. doi:10.1002/JPER.23-0530
  • Guo L, Zhang Y, Liu H, Cheng Q, Yang S, Yang D. All-trans retinoic acid inhibits the osteogenesis of periodontal ligament stem cells by promoting IL-1β production via NF-κB signaling. Int Immunopharmacol. 2022;108:108757. doi:10.1016/j.intimp.2022.108757
  • McCall SH, Sahraei M, Young AB, et al. Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res. 2008;23(1):30–40. doi:10.1359/jbmr.071002
  • Zhao P, Liu J, Pan C, Pan Y. NLRP3 inflammasome is required for apoptosis of Aggregatibacter actinomycetemcomitans-infected human osteoblastic MG63 cells. Acta Histochem. 2014;116(7):1119–1124. doi:10.1016/j.acthis.2014.05.008
  • Ran S, Chu M, Gu S, Wang J, Liang J. Enterococcus faecalis induces apoptosis and pyroptosis of human osteoblastic MG63 cells via the NLRP3 inflammasome. Int Endodontic J. 2019;52(1):44–53. doi:10.1111/iej.12965
  • Yoshida K, Okamura H, Hiroshima Y, et al. PKR induces the expression of NLRP3 by regulating the NF-κB pathway in Porphyromonas gingivalis-infected osteoblasts. Exp Cell Res. 2017;354(1):57–64. doi:10.1016/j.yexcr.2017.03.028
  • Zhu X, Zhang K, Lu K, et al. Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in traumatic osteomyelitis. Ann Translat Med. 2019;7(8):170. doi:10.21037/atm.2019.03.40
  • Dai W, Wang M, Wang P, et al. lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. IntJ Mol Med. 2021;47(2):607–620. doi:10.3892/ijmm.2020.4827
  • Yang Y, Miao L, Chang S, et al. Exosome-derived LncRNA TCONS_00072128 mediated osteogenic differentiation and inflammation by Caspase 8 regulation. Front Genetics. 2021;12:831420. doi:10.3389/fgene.2021.831420
  • Yang Q, Zhao W, Chen Y, et al. RelA/MicroRNA-30a/NLRP3 signal axis is involved in rheumatoid arthritis via regulating NLRP3 inflammasome in macrophages. Cell Death Dis. 2021;12(11):1060. doi:10.1038/s41419-021-04349-5
  • Crivaro A, Bondar C, Mucci JM, et al. Gaucher disease-associated alterations in mesenchymal stem cells reduce osteogenesis and favour adipogenesis processes with concomitant increased osteoclastogenesis. Mol Gene Metabol. 2020;130(4):274–282. doi:10.1016/j.ymgme.2020.06.003
  • Xu L, Shen L, Yu X, Li P, Wang Q, Li C. Effects of irisin on osteoblast apoptosis and osteoporosis in postmenopausal osteoporosis rats through upregulating Nrf2 and inhibiting NLRP3 inflammasome. Exp Ther Med. 2020;19(2):1084–1090. doi:10.3892/etm.2019.8313
  • Zhao W, Cao Y, Chen Y, et al. NLRP3 regulates mandibular healing through interaction with UCHL5 in MSCs. Int J Bio Sci. 2023;19(3):936–949. doi:10.7150/ijbs.78174
  • Zhang J, Wei K. Necrosulfonamide reverses pyroptosis-induced inhibition of proliferation and differentiation of osteoblasts through the NLRP3/caspase-1/GSDMD pathway. Exp Cell Res. 2021;405(2):112648. doi:10.1016/j.yexcr.2021.112648
  • Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Bio Sci. 2012;8(2):272–288. doi:10.7150/ijbs.2929
  • Li K, Han J, Wang Z. Histone modifications centric-regulation in osteogenic differentiation. Cell Death Discovery. 2021;7(1):91. doi:10.1038/s41420-021-00472-6
  • Guo J, Wang F, Hu Y, et al. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med. 2023;4(1):100881. doi:10.1016/j.xcrm.2022.100881
  • Guo X, Wu Z. GABARAP ameliorates IL-1β-induced inflammatory responses and osteogenic differentiation in bone marrow-derived stromal cells by activating autophagy. Sci Rep. 2021;11(1):11561. doi:10.1038/s41598-021-90586-9
  • Xie Z, Yu W, Zheng G, et al. TNF-α-mediated m(6)A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun. 2021;12(1):5373. doi:10.1038/s41467-021-25710-4
  • Bonar SL, Brydges SD, Mueller JL, et al. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One. 2012;7(4):e35979. doi:10.1371/journal.pone.0035979
  • Ahn JS, Seo Y, Oh SJ, et al. The activation of NLRP3 inflammasome potentiates the immunomodulatory abilities of mesenchymal stem cells in a murine colitis model. BMB Rep. 2020;53(6):329–334. doi:10.5483/BMBRep.2020.53.6.065
  • Yang C, Song B, Han L, Gao Z. Study on the mechanism of NLRP3 effect on the skeleton of de-ovalized mice. Biochem Biophys Rep. 2023;35:101496. doi:10.1016/j.bbrep.2023.101496
  • Ding Z, Chen W, Wu H, et al. Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis. Chin Med. 2023;18(1):48. doi:10.1186/s13020-023-00750-8
  • Duan Y, Li H, Dong X, Geng Z, Xu X, Liu Y. VEGF mitigates bisphosphonate-induced apoptosis and differentiation inhibition of MC3T3-E1 cells. Exp Ther Med. 2022;23(2):130. doi:10.3892/etm.2021.11053
  • Xia C, Ou S, Yang Y, et al. ELP2-NLRP3-GSDMD/GSDME-mediated pyroptosis is induced by TNF-α in MC3T3-E1 cells during osteogenic differentiation. J Cell Mol Med. 2023;27(24):4093–4106. doi:10.1111/jcmm.17994
  • Fang M, Li B, Li X, Wang Y, Zhuang Y. MicroRNA-29b regulates pyroptosis involving calcific aortic valve disease through the STAT3/SOCS1 pathway. Int J Cardiol. 2023;371:319–328. doi:10.1016/j.ijcard.2022.08.029
  • Jun C, Jun L, Shiting L, Qiangguo G, Gang Z. 降钙素基因相关肽通过抑制Nod样受体蛋白3表达促进小鼠成骨细胞分化的研究 [Calcitonin gene-related peptide inhibits the expression of Nod-like receptor protein 3 to Dromote osteoblast differentiation in mouse osteoblasts in vitro]. Hua xi kou qiang yi xue za zhi. 2016;34(1):12–16. Chinese. doi:10.7518/hxkq.2016.01.003
  • Zheng W, Meng Z, Zhu Z, et al. Metal-organic framework-based nanomaterials for regulation of the osteogenic microenvironment. Small;2024. e2310622. doi:10.1002/smll.202310622
  • Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci. 2021;18(16):3697–3707. doi:10.7150/ijms.61080
  • Zhang F, Lv M, Wang S, et al. Ultrasound-triggered biomimetic ultrashort peptide nanofiber hydrogels promote bone regeneration by modulating macrophage and the osteogenic immune microenvironment. Bioact Mater. 2024;31:231–246. doi:10.1016/j.bioactmat.2023.08.008
  • Long J, Yao Z, Zhang W, et al. Regulation of osteoimmune microenvironment and osteogenesis by 3D-Printed PLAG/black phosphorus scaffolds for bone regeneration. Adv Sci. 2023;10(28):e2302539. doi:10.1002/advs.202302539
  • Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. Biomate Rransl. 2023;4(4):248–269. doi:10.12336/biomatertransl.2023.04.005
  • Zhang Y, Yan M, Niu W, et al. Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis in amouse osteolysis model. Int Immunopharmacol. 2022;107:108699. doi:10.1016/j.intimp.2022.108699
  • Zhang Y, Yan M, Shan W, et al. Bisphenol A induces pyroptotic cell death via ROS/NLRP3/Caspase-1 pathway in osteocytes MLO-Y4. Food Chem Toxicol. 2022;159:112772. doi:10.1016/j.fct.2021.112772
  • Yao Y, Cai X, Ren F, et al. The Macrophage-Osteoclast Axis in Osteoimmunity and Osteo-Related Diseases. Front Immunol. 2021;12:664871. doi:10.3389/fimmu.2021.664871
  • Wang Z, Luo W, Zhang G, et al. FoxO1 knockdown inhibits RANKL-induced osteoclastogenesis by blocking NLRP3 inflammasome activation. Oral Dis. 2023. doi:10.1111/odi.14800
  • An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019;33(11):12515–12527. doi:10.1096/fj.201802805RR
  • Yao L, Huang C, Dai J. Staphylococcus aureus enhances osteoclast differentiation and bone resorption by stimulating the NLRP3 inflammasome pathway. Mol Biol Rep. 2023;50(11):9395–9403. doi:10.1007/s11033-023-08900-9
  • Alippe Y, Wang C, Ricci B, et al. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep. 2017;7(1):6630. doi:10.1038/s41598-017-07014-0
  • Pieters BCH, Cappariello A, van den Bosch MHJ, van Lent P, Teti A, van de Loo FAJ. Macrophage-derived extracellular vesicles as carriers of alarmins and their potential involvement in bone homeostasis. Front Immunol. 2019;10:1901. doi:10.3389/fimmu.2019.01901
  • Dai B, Xu J, Li X, et al. Macrophages in epididymal adipose tissue secrete osteopontin to regulate bone homeostasis. Nat Commun. 2022;13(1):427. doi:10.1038/s41467-021-27683-w
  • Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage Polarization and Osteoporosis: a Review. Nutrients. 2020;12(10):2999. doi:10.3390/nu12102999
  • Zhu L, Wang Z, Sun X, et al. STAT3/Mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss. J Bone Miner Res. 2023;38(2):335–353. doi:10.1002/jbmr.4756
  • Chen Y, Wu Y, Guo L, et al. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis. J Nanobiotechnol. 2023;21(1):98. doi:10.1186/s12951-023-01855-w
  • Hou L, Ye Y, Gou H, et al. A20 inhibits periodontal bone resorption and NLRP3-mediated M1 macrophage polarization. Exp Cell Res. 2022;418(1):113264. doi:10.1016/j.yexcr.2022.113264
  • Ge G, Bai J, Wang Q, et al. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Sci China Life Sci. 2022;65(3):588–603. doi:10.1007/s11427-020-1939-1
  • Yang L, Tao W, Xie C, et al. Interleukin-37 ameliorates periodontitis development by inhibiting NLRP3 inflammasome activation and modulating M1/M2 macrophage polarization. J Periodontal Res. 2024;59(1):128–139. doi:10.1111/jre.13196
  • Grim JC, Aguado BA, Vogt BJ, et al. Secreted factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells. Arteriosclerosis Thrombosis Vasc Biol. 2020;40(11):e296–e308. doi:10.1161/ATVBAHA.120.315261
  • Wang Z, Feng X, Zhang G, et al. Artesunate ameliorates ligature-induced periodontitis by attenuating NLRP3 inflammasome-mediated osteoclastogenesis and enhancing osteogenic differentiation. Int Immunopharmacol. 2023;123:110749. doi:10.1016/j.intimp.2023.110749
  • Liu H, Zhang X, Zhong X, et al. Puerarin inhibits vascular calcification of uremic rats. Eur J Pharmacol. 2019;855:235–243. doi:10.1016/j.ejphar.2019.05.023
  • Wang C, Xia Y, Qu L, Liu Y, Liu X, Xu K. Cardamonin inhibits osteogenic differentiation of human valve interstitial cells and ameliorates aortic valve calcification via interfering in the NF-κB/NLRP3 inflammasome pathway. Food Funct. 2021;12(23):11808–11818. doi:10.1039/D1FO00813G
  • Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, et al. β boswellic acid blocks articular innate immune responses: an in silico and in vitro approach to traditional medicine. Antioxidants. 2023;12(2):371. doi:10.3390/antiox12020371
  • Kim EN, Nabende WY, Jeong H, Hahn D, Jeong GS. The marine-derived natural product epiloliolide isolated from sargassum horneri regulates NLRP3 via PKA/CREB, promoting proliferation and anti-inflammatory effects of human periodontal ligament cells. Mar Drugs. 2021;19(7):388. doi:10.3390/md19070388
  • Chen Y, Hu W, Wang Y, et al. A selected small molecule prevents inflammatory osteolysis through restraining osteoclastogenesis by modulating PTEN activity. Clin transl med. 2020;10(8):e240. doi:10.1002/ctm2.240
  • Liu M, Li F, Huang Y, et al. Caffeic acid phenethyl ester ameliorates calcification by inhibiting activation of the AKT/NF-κB/NLRP3 inflammasome pathway in human aortic valve interstitial cells. Front Pharmacol. 2020;11:826. doi:10.3389/fphar.2020.00826
  • Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, et al. Amitriptyline blocks innate immune responses mediated by toll-like receptor 4 and IL-1 receptor: preclinical and clinical evidence in osteoarthritis and gout. Br J Pharmacol. 2022;179(2):270–286. doi:10.1111/bph.15707
  • Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A, et al. Repurposing drugs to inhibit innate immune responses associated with TLR4, IL1, and NLRP3 signaling in joint cells. Biomed Pharmacother. 2022;155:113671. doi:10.1016/j.biopha.2022.113671
  • Fu F, Luo H, Du Y, et al. AR/PCC herb pair inhibits osteoblast pyroptosis to alleviate diabetes-related osteoporosis by activating Nrf2/Keap1 pathway. J Cell Mol Med. 2023;27(22):3601–3613. doi:10.1111/jcmm.17928
  • Greene E, Flees J, Dhamad A, et al. Double-stranded RNA is a novel molecular target in osteomyelitis pathogenesis: a translational avian model for human bacterial chondronecrosis with osteomyelitis. Am J Pathol. 2019;189(10):2077–2089. doi:10.1016/j.ajpath.2019.06.013
  • Chen W, Tang P, Fan S, Jiang X. A novel inhibitor INF 39 promotes osteogenesis via blocking the NLRP3/IL-1β axis. Biomed Res Int. 2022;2022:7250578. doi:10.1155/2022/7250578
  • Zhang C, Liu M, Wang X, et al. ALP inhibitors inhibit inflammatory responses and osteoblast differentiation in hVIC via AKT-ERK pathways. Alternat Therap Health Med. 2023;29(1):58–65.
  • Zeng XZ, Zhang YY, Yang Q, et al. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCγ1-Ca(2+)-NFATc1 signaling pathway. Acta Pharmacol Sin. 2020;41(2):229–236. doi:10.1038/s41401-019-0289-6
  • Ye Y, Chen A, Li L, et al. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification. Kidney Int. 2022;102(6):1259–1275. doi:10.1016/j.kint.2022.07.034
  • Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies. Mol Aspect Med. 2020;76:100889. doi:10.1016/j.mam.2020.100889
  • Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52. doi:10.1111/imr.12286
  • Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res. 2022;118(2):372–385. doi:10.1093/cvr/cvab010
  • Yang F, Qin Y, Wang Y, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Bio Sci. 2019;15(5):1010–1019. doi:10.7150/ijbs.29680
  • Zhang Y, Yang W, Li W, Zhao Y. NLRP3 inflammasome: checkpoint connecting innate and adaptive immunity in autoimmune diseases. Front Immunol. 2021;12:732933. doi:10.3389/fimmu.2021.732933
  • Titorencu I, Pruna V, Jinga VV, Simionescu M. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res. 2014;355(1):23–33. doi:10.1007/s00441-013-1750-3
  • Jin X, Liu D, Zhou X, Luo X, Huang Q, Huang Y. Entrectinib inhibits NLRP3 inflammasome and inflammatory diseases by directly targeting NEK7. Cell Rep Med. 2023;4(12):101310. doi:10.1016/j.xcrm.2023.101310