22
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

TAK1 in Vascular Signaling: “Friend or Foe”?

, , ORCID Icon, , , & show all
Pages 3031-3041 | Received 10 Jan 2024, Accepted 16 Apr 2024, Published online: 17 May 2024

References

  • Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules. 2020;10(3):487. doi:10.3390/biom10030487
  • Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol. 2023;20(9):1002–1022. doi:10.1038/s41423-023-01036-7
  • Bai B, Ji Z, Wang F, et al. CTRP12 ameliorates post-myocardial infarction heart failure through down-regulation of cardiac apoptosis, oxidative stress and inflammation by influencing the TAK1-p38 MAPK/JNK pathway. Inflamm Res. 2023;72(7):1375–1390. doi:10.1007/s00011-023-01758-4
  • Zhe-Wei S, Li-Sha G, Yue-Chun L, Coşkun H, Koyuncu O, Walker S. The role of necroptosis in cardiovascular disease. Front Pharm. 2018;9:9. doi:10.3389/fphar.2018.00009
  • Roh YS, Song J, Seki E. TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol. 2014;49(2):185–194. doi:10.1007/s00535-013-0931-x
  • Zou W, Yin P, Shi Y, et al. A novel biological role of α-mangostin via TAK1–NF-κB pathway against inflammatory. Inflammation. 2019;42(1):103–112. doi:10.1007/s10753-018-0876-6
  • Meng Z, Si CY, Teng S, Yu XH, Li HY. Tanshinone IIA inhibits lipopolysaccharide‑induced inflammatory responses through the TLR4/TAK1/NF‑κB signaling pathway in vascular smooth muscle cells. IntJ Mol Med. 2019;43(4):1847–1858. doi:10.3892/ijmm.2019.4100
  • Naito H, Iba T, Wakabayashi T, et al. TAK1 prevents endothelial apoptosis and maintains vascular integrity. Dev Cell. 2019;48(2):151–166.e7. doi:10.1016/j.devcel.2018.12.002
  • Jiang T, Wang Z, Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem Cell Res Ther. 2020;11(1):1–10. doi:10.1186/s13287-020-01723-6
  • Azadian Z, Hosseini S, Dizjikan ZP, et al. Computational and in vitro validation of cardiogenic induction of quercetin on adipose-derived mesenchymal stromal cells through the inhibition of Wnt and non-Smad-dependent TGF-β pathways. J Cell Biochem. 2022;123(2):450–468. doi:10.1002/jcb.30189
  • Yang J, Li Y, Wang L, Zhang Z, Li Z, Jia HQ. LncRNA H19 aggravates TNF-α-induced inflammatory injury via TAK1 pathway in MH7A cells. BioFactors. 2020;46(5):813–820. doi:10.1002/biof.1659
  • Rodrigues M, Petrova T, Tibbs B, Arthur JSC, Cohen P. TAK1 protein kinase activity is required for TLR signalling and cytokine production in myeloid cells. Biochem J. 2022;479(17):1891–1907. doi:10.1042/BCJ20220314
  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 1999;398(6724):252–256. doi:10.1038/18465
  • Farhan M, McIntosh KA, Cunningham MR, Plevin R, Tinto K. TAK1 is an upstream MAP 3 K regulator of a novel non-canonical NFkB pathway stimulated by IL-1b: 19th world congress of basic & clinical pharmacology 2023. Br J Pharmacol. 2023;180(S1):708–709. doi:10.1111/bph.16110
  • Shibuya H, Yamaguchi K, Shirakabe K, et al. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 1996;272(5265):1179–1182. doi:10.1126/science.272.5265.1179
  • Besse A, Lamothe B, Campos AD, et al. TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem. 2007;282(6):3918–3928. doi:10.1074/jbc.M608867200
  • Zhu L, Lama S, Tu L, Dusting GJ, Wang JH, Liu GS. TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis. 2021;24(3):453–470. doi:10.1007/s10456-021-09787-5
  • Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A, van Aalten DM. O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J. 2012;31(6):1394–1404. doi:10.1038/emboj.2012.8
  • Zhao J, Cai B, Shao Z, et al. TRIM26 positively regulates the inflammatory immune response through K11-linked ubiquitination of TAB1. Cell Death Differ. 2021;28(11):3077–3091. doi:10.1038/s41418-021-00803-1
  • Scholz R, Sidler CL, Thali RF, Winssinger N, Cheung PCF, Neumann D. Autoactivation of transforming growth factor β-activated Kinase 1 Is a sequential bimolecular process. J Biol Chem. 2010;285(33):25753–25766. doi:10.1074/jbc.M109.093468
  • Shim JH, Xiao C, Paschal AE, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19(22):2668–2681. doi:10.1101/gad.1360605
  • Zhang J, Macartney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474(13):2235–2248. doi:10.1042/BCJ20170288
  • Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood. 2012;120(18):3846–3857. doi:10.1182/blood-2012-03-416198
  • Xu YR, Lei CQ. TAK1-TABs complex: A central Signalosome in inflammatory responses. Front Immunol. 2021;11:608976. doi:10.3389/fimmu.2020.608976
  • Braun H, Staal J. Stabilization of the TAK1 adaptor proteins TAB2 and TAB3 is critical for optimal NF-κB activation. FEBS J. 2020;287(15):3161–3164. doi:10.1111/febs.15210
  • Feng ZH, bo ZH, Wu X, ling GY, dong CW, Qian F. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin. 2020;41(10):1348–1356. doi:10.1038/s41401-020-0462-y
  • Ran D, Ma Y, Liu W, et al. TGF-β-activated kinase 1 (TAK1) mediates cadmium-induced autophagy in osteoblasts via the AMPK / mTORC1 / ULK1 pathway. Toxicology. 2020;442:152538. doi:10.1016/j.tox.2020.152538
  • Zheng X, Yu Q, Shang D, et al. TAK1 accelerates transplant arteriosclerosis in rat aortic allografts by inducing autophagy in vascular smooth muscle cells. Atherosclerosis. 2022;343:10–19. doi:10.1016/j.atherosclerosis.2022.01.009
  • Li C, Zhang S, Chen X, et al. Farnesoid X receptor activation inhibits TGFBR1/TAK1-mediated vascular inflammation and calcification via miR-135a-5p. Commun Biol. 2020;3(1):327. doi:10.1038/s42003-020-1058-2
  • McCarthy CG, Wenceslau CF, Ogbi S, Szasz T, Webb RC. Toll-like receptor 9-Dependent AMPKα Activation Occurs via TAK1 and Contributes to RhoA/ROCK Signaling and Actin polymerization in vascular smooth muscle cells. J Pharmacol Exp Ther. 2018;365(1):60–71. doi:10.1124/jpet.117.245746
  • Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol. 2017;102:10–21. doi:10.1016/j.yjmcc.2016.12.004
  • Morales-Cano D, Izquierdo-García JL, Barreira B, et al. Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprogramming and pulmonary hypertension in the SUGEN5416/hypoxia rat model. Front Pharm. 2023;14:1021535. doi:10.3389/fphar.2023.1021535
  • Nasim MT, Ogo T, Chowdhury HM, et al. BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFβ-TAK1-MAPK pathways in PAH. Hum Mol Genet. 2012;21(11):2548–2558. doi:10.1093/hmg/dds073
  • Wang DM, Soni D, Regmi SC, Vogel SM, Tiruppathi C, Hardin J. TAK1 is essential for endothelial barrier maintenance and repair after lung vascular injury. Mol Biol Cell. 2022;33(7):ar65. doi:10.1091/mbc.E21-11-0563
  • Yu M, Wu X, Wang J, et al. Paeoniflorin attenuates monocrotaline-induced pulmonary arterial hypertension in rats by suppressing TAK1-MAPK/NF-κB pathways. Int J Med Sci. 2022;19(4):681–694. doi:10.7150/ijms.69289
  • Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R. Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem. 2000;275(29):22064–22068. doi:10.1074/jbc.M910346199
  • Chang MY, Ho FM, Wang JS, et al. AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway. Biochem Pharmacol. 2010;80(8):1210–1220. doi:10.1016/j.bcp.2010.06.049
  • Liu X, Yang T, Miao L, Mei YA, Hu C. Leukotriene B4 Inhibits L-type calcium channels via p38 Signaling pathway in vascular smooth muscle cells. Cell Physiol Biochem. 2015;37(5):1903–1913. doi:10.1159/000438551
  • Dalvi P, Sharma H, Konstantinova T, Sanderson M, Brien-Ladner AO, Dhillon NK. Hyperactive TGF-β signaling in smooth muscle cells exposed to HIV-protein(s) and Cocaine: Role in pulmonary vasculopathy. Sci Rep. 2017;7(1):10433. doi:10.1038/s41598-017-10438-3
  • Doyon P, Servant MJ. Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells. J Biol Chem. 2010;285(40):30708–30718. doi:10.1074/jbc.M110.126433
  • Song Z, Zhu X, Jin R, et al. Roles of the Kinase TAK1 in CD40-mediated effects on vascular oxidative stress and neointima formation after vascular injury. PLoS One. 2014;9(7):e101671. doi:10.1371/journal.pone.0101671
  • Jadrich JL, O’Connor MB, Coucouvanis E. The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development. 2006;133(8):1529–1541. doi:10.1242/dev.02333
  • Zippel N, Malik RA, Frömel T, et al. Transforming growth factor-β-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-α1 and redox balance in endothelial cells. Arterios Thromb Vasc Biol. 2013;33(12):2792–2799. doi:10.1161/ATVBAHA.113.301848
  • Wang JH, Lin FL, Chen J, et al. TAK1 blockade as a therapy for retinal neovascularization. Pharmacol Res. 2023;187:106617. doi:10.1016/j.phrs.2022.106617
  • Shang Y, Doan CN, Arnold TD, et al. Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-β-TAK1-dependent mechanism. PLoS Biol. 2013;11(4):e1001527. doi:10.1371/journal.pbio.1001527
  • Wang JH, Tseng CL, Lin FL, et al. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics. 2022;12(2):657–674. doi:10.7150/thno.65098
  • Kim SI, Lee SY, Wang Z, et al. TGF-β-activated kinase 1 is crucial in podocyte differentiation and glomerular capillary formation. J Am Soc Nephrol. 2014;25(9):1966–1978. doi:10.1681/ASN.2013030252
  • Hu H, Lee SR, Bai H, et al. TGFβ (Transforming Growth Factor-Beta)-activated Kinase 1 Regulates Arteriovenous Fistula Maturation. Arterios Thromb Vasc Biol. 2020;40(7):e203–e213. doi:10.1161/ATVBAHA.119.313848
  • Shen Q, Chen Z, Zhao F, et al. Reversal of prolonged obesity-associated cerebrovascular dysfunction by inhibiting microglial Tak1. Nat Neurosci. 2020;23(7):832–+. doi:10.1038/s41593-020-0642-6
  • Huang CY, Sheu WHH, Chiang AN. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol Nutr Food Res. 2015;59(4):751–762. doi:10.1002/mnfr.201400687
  • Canugovi C, Stevenson MD, Vendrov AE, et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biol. 2019;26:101288. doi:10.1016/j.redox.2019.101288
  • Yang B, Li W, Zheng Q, et al. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun. 2015;463(1–2):130–136. doi:10.1016/j.bbrc.2015.05.047
  • Courboulin A, Tremblay VL, Barrier M, et al. Krüppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res. 2011;12(1):128. doi:10.1186/1465-9921-12-128
  • Yaron A, Hatzubai A, Davis M, et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature. 1998;396:(6711):590–594. doi:10.1038/25159
  • Ridder DA, Wenzel J, Müller K, et al. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J Exp Med. 2015;212(10):1529–1549. doi:10.1084/jem.20150165
  • Fritsch M, Gunther SD, Schwarzer R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:(7784):683–+. doi:10.1038/s41586-019-1770-6
  • Naito MG, Xu D, Amin P, et al. Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci. 2020;117(9):4959–4970. doi:10.1073/pnas.1916427117
  • Molema G, Zijlstra JG, van Meurs M, JAAM K. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol. 2022;18(2):95–112. doi:10.1038/s41581-021-00489-1
  • Shu Z, Chen S, Xiang H, et al. AKT/PACS2 Participates in Renal Vascular Hyperpermeability by Regulating Endothelial Fatty Acid Oxidation in Diabetic Mice. Front Pharm. 2022;13:876937. doi:10.3389/fphar.2022.876937
  • Fu Q, Yu W, Fu S, Xu Z, Zhang S. MicroRNA-449c-5p alleviates lipopolysaccharide-induced HUVECs injury via inhibiting the activation NF-κb signaling pathway by TAK1. Mol Immunol. 2022;146:18–26. doi:10.1016/j.molimm.2022.03.123
  • Hoefflin R, Harlander S, Schäfer S, et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun. 2020;11(1):1–21. doi:10.1038/s41467-020-17873-3
  • Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharm. 2023;14. doi:10.3389/fphar.2023.1108915
  • Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res. 2018;37(1):70. doi:10.1186/s13046-018-0730-6
  • Safina A, Ren M-Q, Vandette E, Bakin AV. TAK1 is required for TGF-β1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene. 2008;27(9):1198–1207. doi:10.1038/sj.onc.1210768
  • Mukwaya A, Mirabelli P, Lennikov A, et al. Repeat corneal neovascularization is characterized by more aggressive inflammation and vessel invasion than in the initial phase. Invest Ophthalmol Vis Sci. 2019;60(8):2990–3001. doi:10.1167/iovs.19-27591
  • Wang Y, Mao Y, Zhang X, et al. TAK1 may promote the development of diabetic nephropathy by reducing the stability of SnoN protein. Life Sci. 2019;228:1–10. doi:10.1016/j.lfs.2019.04.058
  • Lok CE, Huber TS, Lee T, et al. KDOQI Clinical practice guideline for vascular access: 2019 update. Am J Kidney Dis. 2020;75(4 Suppl 2):S1–S164. doi:10.1053/j.ajkd.2019.12.001