26
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Prognostic Value of Inflammatory Cytokines in Predicting Hospital Readmissions in Heart Failure with Preserved Ejection Fraction

ORCID Icon, , , , , , , , & show all
Pages 3003-3012 | Received 17 Jan 2024, Accepted 02 May 2024, Published online: 15 May 2024

References

  • Joseph P, Roy A, Lonn E, et al. Global variations in heart failure etiology, management, and outcomes. JAMA. 2023;329(19):1650–1661. doi:10.1001/jama.2023.5942
  • Metra M, Tomasoni D, Adamo M, et al. Worsening of chronic heart failure: definition, epidemiology, management and prevention. A clinical consensus statement by the heart failure association of the European society of cardiology. Eur J Heart Fail. 2023;25(6):776–791. doi:10.1002/ejhf.2874
  • MacDonald BJ, Virani SA, Zieroth S, et al. Heart failure management in 2023: a pharmacotherapy- and lifestyle-focused comparison of current international guidelines. CJC Open. 2023;5(8):629–640. doi:10.1016/j.cjco.2023.05.008
  • Desai AS, Lam C, McMurray J, et al. How to manage heart failure with preserved ejection fraction: practical guidance for clinicians. JACC Heart Fail. 2023;11(6):619–636. doi:10.1016/j.jchf.2023.03.011
  • Gheorghiade M, Follath F, Ponikowski P, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European society of intensive care medicine. Eur J Heart Fail. 2010;12(5):423–433. doi:10.1093/eurjhf/hfq045
  • Nolan M, Arnott C. Risks and burdens of unplanned heart failure readmissions: how to cut a Gordian knot? Heart Lung Circ. 2023;32(8):891–893. doi:10.1016/j.hlc.2023.08.002
  • Peh ZH, Dihoum A, Hutton D, et al. Inflammation as a therapeutic target in heart failure with preserved ejection fraction. Front Cardiovasc Med. 2023;10:1125687. doi:10.3389/fcvm.2023.1125687
  • Mooney L, Jackson CE, Adamson C, et al. Adverse outcomes associated with interleukin-6 in patients recently hospitalized for heart failure with preserved ejection fraction. Circ Heart Fail. 2023;16(4):e010051. doi:10.1161/CIRCHEARTFAILURE.122.010051
  • Segiet OA, Piecuch A, Mielanczyk L, et al. Role of interleukins in heart failure with reduced ejection fraction. Anatol J Cardiol. 2019;22(6):287–299. doi:10.14744/AnatolJCardiol.2019.32748
  • McDonagh TA, Metra M, Adamo M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;44(37):3627–3639. doi:10.1093/eurheartj/ehad195
  • Chen Y, Zheng H, He Y. Prognostic significance of controlling nutritional status in older adults with heart failure with preserved ejection fraction: a prospective comparative study with other objective nutritional indices. Aging Clin Exp Res. 2023;35(6):1305–1315. doi:10.1007/s40520-023-02395-x
  • Zhou Q, Yang J, Tang H, et al. High triglyceride-glucose (TyG) index is associated with poor prognosis of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2023;22(1):263. doi:10.1186/s12933-023-02001-4
  • Rego R, Pereira N, Pinto A, et al. Impact of a heart failure multidisciplinary clinic on the reduction of healthcare-related events and costs: the GEstIC study. Front Cardiovasc Med. 2023;10:1232291. doi:10.3389/fcvm.2023.1232291
  • Sotomi Y, Tamaki S, Hikoso S, et al. Pathophysiological insights into machine learning-based subphenotypes of acute heart failure with preserved ejection fraction. Heart. 2023. doi:10.1136/heartjnl-2023-323059
  • Ye B, Bradshaw AD, Abrahante JE, et al. Left ventricular gene expression in heart failure with preserved ejection fraction-profibrotic and proinflammatory pathways and genes. Circ Heart Fail. 2023;16(8):e010395. doi:10.1161/CIRCHEARTFAILURE.123.010395
  • Paulus WJ. Unfolding Discoveries in Heart Failure. N Engl J Med. 2020;382(7):679–682. doi:10.1056/NEJMcibr1913825
  • Riehle C, Bauersachs J. Key inflammatory mechanisms underlying heart failure. Herz. 2019;44(2):96–106. doi:10.1007/s00059-019-4785-8
  • Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515–581. doi:10.1152/physrev.00024.2005
  • Tsioufis P, Theofilis P, Tsioufis K, et al. The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches. Int J Mol Sci. 2022;23(24):15937. doi:10.3390/ijms232415937
  • Liu S, Ni S, Wang C, et al. Association of serum cytokines with coronary chronic total occlusion and their role in predicting procedural outcomes. Hellenic J Cardiol. 2023. doi:10.1016/j.hjc.2023.08.013
  • Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res. 2021;117(2):423–434. doi:10.1093/cvr/cvaa217
  • Schiattarella GG, Alcaide P, Condorelli G, et al. Immunometabolic Mechanisms of heart failure with preserved ejection fraction. Nat Cardiovasc Res. 2022;1(3):211–222. doi:10.1038/s44161-022-00032-w
  • Wang H, Wu J, Ma L, et al. The role of interleukin −1 family in fibrotic diseases. Cytokine. 2023;165:156161. doi:10.1016/j.cyto.2023.156161
  • Del Buono MG, Bonaventura A, Vecchié A, et al. Pathogenic pathways and therapeutic targets of inflammation in heart diseases: a focus on Interleukin-1. Eur J Clin Invest. 2023. doi:10.1111/eci.14110
  • Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020;126(9):1260–1280. doi:10.1161/CIRCRESAHA.120.315937
  • Liu H, Huang Y, Zhao Y, et al. Inflammatory macrophage interleukin-1β mediates high-fat diet-induced heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2023;8(2):174–185. doi:10.1016/j.jacbts.2022.08.003
  • Alogna A, Koepp KE, Sabbah M, et al. Interleukin-6 in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2023. doi:10.1016/j.jchf.2023.06.031
  • Sandip C, Tan L, Huang J, et al. Common variants in IL-17A/IL-17RA axis contribute to predisposition to and progression of congestive heart failure. Medicine. 2016;95(27):e4105. doi:10.1097/MD.0000000000004105
  • Baldeviano GC, Barin JG, Talor MV, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106(10):1646–1655. doi:10.1161/CIRCRESAHA.109.213157
  • Li XF, Pan D, Zhang WL, et al. Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients. Genet Mol Res. 2016;15(2). doi:10.4238/gmr.15028014
  • Baumhove L, Bomer N, Tromp J, et al. Clinical characteristics and prognosis of patients with heart failure and high concentrations of interleukin-17D. Int J Cardiol. 2023:131384. doi:10.1016/j.ijcard.2023.131384
  • Manilall A, Mokotedi L, Gunter S, et al. Tumor necrosis factor-α mediates inflammation-induced early-stage left ventricular systolic dysfunction. J Cardiovasc Pharmacol. 2023;81(6):411–422. doi:10.1097/FJC.0000000000001428
  • Albar Z, Albakri M, Hajjari J, et al. Inflammatory markers and risk of heart failure with reduced to preserved ejection fraction. Am J Cardiol. 2022;167:68–75. doi:10.1016/j.amjcard.2021.11.045
  • Chan MM, Santhanakrishnan R, Chong JP, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–88. doi:10.1002/ejhf.431
  • Wang S, Wang Y, Luo M, et al. MMMELD-XI score is associated with short-term adverse events in patients with heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:650191. doi:10.3389/fcvm.2021.650191