44
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Graph Theory Further Revealed Visual Spatial Working Memory Impairment in Patients with Inflammatory Bowel Disease

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 2811-2823 | Received 06 Mar 2024, Accepted 25 Apr 2024, Published online: 08 May 2024

References

  • Windsor JW, Kaplan GG. Evolving epidemiology of IBD. Curr Gastroenterol Rep. 2019;21:40. doi:10.1007/s11894-019-0705-6
  • Novotný M, Klimova B, Valis M. Microbiome and cognitive impairment: Can any diets influence learning processes in a positive way? Front Aging Neurosci. 2019;11:170. doi:10.3389/fnagi.2019.00170
  • Yamamoto-Furusho JK, Bozada Gutiérrez KE, Sarmiento-Aguilar A, Fresán-Orellana A, Arguelles-Castro P, García-Alanis M. Depression and Anxiety disorders impact in the quality of life of patients with inflammatory bowel disease. Psychiatry J. 2021;2021:5540786. doi:10.1155/2021/5540786
  • Li J, Li GX, Guo Y, Lu XQ, Li L, Ding JP. Regional homogeneity in the patients of irritable bowel syndrome complicated with depression: a resting-state functional magnetic resonance imaging study. Zhonghua Yi Xue Za Zhi. 2018;98:196–201. doi:10.3760/cma.j.issn.0376-2491.2018.03.008
  • Thomann AK, Schmitgen MM, Kmuche D, et al. Exploring joint patterns of brain structure and function in inflammatory bowel diseases using multimodal data fusion. Neurogastroenterol Motil. 2021;33:e14078. doi:10.1111/nmo.14078
  • Gracie DJ, Hamlin PJ, Ford AC. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol. 2019;4:632–642. doi:10.1016/s2468-1253(19)30089-5
  • Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med. 2011;62:381–396. doi:10.1146/annurev-med-012309-103958
  • Nair VA, Beniwal-Patel P, Mbah I, Young BM, Prabhakaran V, Saha S. Structural Imaging Changes and Behavioral Correlates in Patients with Crohn’s Disease in Remission. Front Hum Neurosci. 2016;10:460. doi:10.3389/fnhum.2016.00460
  • Agostini A, Filippini N, Cevolani D, et al. Brain functional changes in patients with ulcerative colitis: a functional magnetic resonance imaging study on emotional processing. Inflamm Bowel Dis. 2011;17:1769–1777. doi:10.1002/ibd.21549
  • Wang L, Ke J, Zhang H. A functional near-infrared spectroscopy examination of the neural correlates of mental rotation for individuals with different depressive tendencies. Front Hum Neurosci. 2022;16:760738. doi:10.3389/fnhum.2022.760738
  • Schoultz M, Atherton I, Hubbard G, Watson AJ. Assessment of causal link between psychological factors and symptom exacerbation in inflammatory bowel disease: a protocol for systematic review of prospective cohort studies. Syst Rev. 2013;2:8. doi:10.1186/2046-4053-2-8
  • Chu NCW, Sturnieks DL, Lord SR, Menant JC. Visuospatial working memory and obstacle crossing in young and older people. Exp Brain Res. 2022;240:2871–2883. doi:10.1007/s00221-022-06458-9
  • Wang L, Bolin J, Lu Z, Carr M. Visuospatial working memory mediates the relationship between executive functioning and spatial ability. Front Psychol. 2018;9:2302. doi:10.3389/fpsyg.2018.02302
  • Kornelsen J, Witges K, Labus J, Mayer EA, Bernstein CN. Brain structure and function changes in inflammatory bowel disease. Neuroimage: Rep. 2022;2:100097. doi:10.1016/j.ynirp.2022.100097
  • Kornelsen J, Wilson A, Labus JS, Witges K, Mayer EA, Bernstein CN. Brain resting-state network alterations associated with Crohn’s disease. Front Neurol. 2020;11:48. doi:10.3389/fneur.2020.00048
  • He Y, Evans A. Graph theoretical modeling of brain connectivity. Curr Opin Neurol. 2010;23:341–350. doi:10.1097/WCO.0b013e32833aa567
  • Ma K, Zhang X, Song C, et al. Altered topological properties and their relationship to cognitive functions in unilateral temporal lobe epilepsy. Epilepsy Behav. 2023;144:109247. doi:10.1016/j.yebeh.2023.109247
  • Welton T, Kent DA, Auer DP, Dineen RA. Reproducibility of graph-theoretic brain network metrics: a systematic review. Brain Connect. 2015;5:193–202. doi:10.1089/brain.2014.0313
  • Liu P, Li R, Bao C, et al. Altered topological patterns of brain functional networks in Crohn’s disease. Brain Imaging Behav. 2018;12:1466–1478. doi:10.1007/s11682-017-9814-8
  • Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi:10.1111/j.1532-5415.2005.53221.x
  • Chin WY, Choi EP, Chan KT, Wong CK, Chilcot J. The psychometric properties of the center for epidemiologic studies depression scale in Chinese primary care patients: factor structure, construct validity, reliability, sensitivity and responsiveness. PLoS One. 2015;10(8):e0135131. doi:10.1371/journal.pone.0135131
  • Zung WW. A rating instrument for anxiety disorders. Psychosomatics. 1971;12(6):371–379. doi:10.1016/S0033-3182(71)71479-0
  • Donovan KA, Jacobsen PB. The fatigue symptom inventory: a systematic review of its psychometric properties. Support Care Cancer. 2010;19(2):169–185. doi:10.1007/s00520-010-0989-4
  • van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cognit Sci. 2013;17:683–696. doi:10.1016/j.tics.2013.09.012
  • Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–1069. doi:10.1016/j.neuroimage.2009.10.003
  • Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(198701). doi:10.1103/PhysRevLett.87.198701
  • Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–442. doi:10.1038/30918
  • Jackson MC, Morgan HM, Shapiro KL, Mohr H, Linden DE. Strategic resource allocation in the human brain supports cognitive coordination of object and spatial working memory. Hum Brain Mapp. 2011;32:1330–1348. doi:10.1002/hbm.21112
  • Schendan HE, Stern CE. Mental rotation and object categorization share a common network of prefrontal and dorsal and ventral regions of posterior cortex. Neuroimage. 2007;35(3):1264–1277. doi:10.1016/j.neuroimage.2007.01.012
  • Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3:255–274. doi:10.3758/cabn.3.4.255
  • Skagerlund K, Karlsson T, Träff U. Magnitude Processing in the Brain: an fMRI Study of Time, Space, and Numerosity as a Shared Cortical System. Front Hum Neurosci. 2016;10:500. doi:10.3389/fnhum.2016.00500
  • Wen T, Mitchell DJ, Duncan J. Response of the multiple-demand network during simple stimulus discriminations. Neuroimage. 2018;177:79–87. doi:10.1016/j.neuroimage.2018.05.019
  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–215. doi:10.1038/nrn755
  • Bolt T, Laurienti PJ, Lyday R, Morgan A, Dagenbach D. Graph-theoretical study of functional changes associated with the Iowa gambling task. Front Hum Neurosci. 2016;10:314. doi:10.3389/fnhum.2016.00314
  • Sharma S, Bandyopadhyay S. Differential rapid plasticity in auditory and visual responses in the primarily multisensory orbitofrontal cortex. eNeuro. 2020;7(3):ENEURO.0061–20.2020. doi:10.1523/ENEURO.0061-20.2020
  • Alsiö J, Lehmann O, McKenzie C, Theobald DE, Searle L, Xia J. Serotonergic innervations of the orbitofrontal and medial-prefrontal cortices are differentially involved in visual discrimination and reversal learning in rats. Cereb Cortex. 2021;31(2):1090–1105. doi:10.1093/cercor/bhaa277
  • Saleemm KS, Kondom H, Pricem JL. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol. 2008;506(4):659–693. doi:10.1002/cne.21577
  • Saleemm KS, Millerm B, Pricem JL. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. J Comp Neurol. 2014;522(7):1641–1690. doi:10.1002/cne.23498
  • Lee AC, Bussey TJ, Murray EA, et al. Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view. Neuropsychologia. 2005;43:1–11. doi:10.1016/j.neuropsychologia.2004.07.017
  • Epstein RA, Ward EJ. How reliable are visual context effects in the parahippocampal place area? Cereb Cortex. 2010;20:294–303. doi:10.1093/cercor/bhp099
  • Herlin B, Navarro V, Dupont S. The temporal pole: from anatomy to function-A literature appraisal. J Chem Neuroanat. 2021;113:101925. doi:10.1016/j.jchemneu.2021.101925
  • Richter W, Somorjai R, Summers R, et al. Motor area activity during mental rotation studied by time-resolved single-trial fMRI. J Cogn Neurosci. 2000;12:310–320. doi:10.1162/089892900562129
  • Milivojevic B, Hamm JP, Corballis MC. Functional neuroanatomy of mental rotation. J Cogn Neurosci. 2009;21:945–959. doi:10.1162/jocn.2009.21085
  • Cona G, Marino G, Semenza C. TMS of supplementary motor area (SMA) facilitates mental rotation performance: evidence for sequence processing in SMA. Neuroimage. 2017;146:770–777. doi:10.1016/j.neuroimage.2016.10.032
  • Zhu Q, Deng J, Yao M, et al. Effects of physical activity on visuospatial working memory in healthy individuals: a systematic review and meta-analysis. Front Psychol. 2023;(14):1103003. doi:10.3389/fpsyg.2023.1103003
  • Anstey KJ, Horswill MS, Wood JM, Hatherly C. The role of cognitive and visual abilities as predictors in the multifactorial model of driving safety. Accid Anal Prev. 2012;45:766–774. doi:10.1016/j.aap.2011.10.006
  • Thomann AK, Reindl W, Wüstenberg T, Kmuche D, Ebert MP, Szabo K. Aberrant brain structural large-scale connectome in Crohn’s disease. Neurogastroenterol Motil. 2019;31(6):e13593. doi:10.1111/nmo.13593
  • Bao C, Liu P, Liu H, Jin X, Shi Y, Wu L. Difference in regional neural fluctuations and functional connectivity in Crohn’s disease: a resting-state functional MRI study. Brain Imaging Behav. 2018;12(6):1795–1803. doi:10.1007/s11682-018-9850-z
  • Bao CH, Liu P, Liu HR, et al. Alterations in brain grey matter structures in patients with crohn’s disease and their correlation with psychological distress. J Crohns Colitis. 2015;9(7):532–540. doi:10.1093/ecco-jcc/jjv057
  • Bao CH, Liu P, Liu HR, et al. Differences in regional homogeneity between patients with Crohn’s disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging. Pain. 2016;157:1037–1044. doi:10.1097/j.pain.0000000000000479
  • Li N, Zhou H, Tang Q. Red blood cell distribution width: a novel predictive indicator for cardiovascular and cerebrovascular diseases. Dis Markers. 2017;2017:7089493. doi:10.1155/2017/7089493
  • Du Y, Jin M, Liu Q, et al. Association of red blood cell indices with mild cognitive impairment in Chinese elderly individuals: a matched case-control study. Curr Alzheimer Res. 2020;17:1161–1166. doi:10.2174/1567205018666210218144856
  • Qiang YX, Deng YT, Zhang YR, et al. Associations of blood cell indices and anemia with risk of incident dementia: a prospective cohort study of 313,448 participants. Alzheimers Dement. 2023;19:3965–3976. doi:10.1002/alz.13088
  • Yaffe K, Kanaya A, Lindquist K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292(18):2237–2242. doi:10.1001/jama.292.18.2237
  • He XF, Li LL, Xian WB, et al. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J Neuroinflammation. 2021;18(1):153. doi:10.1186/s12974-021-02199-8
  • Friston K. Ten ironic rules for non-statistical reviewers. Neuroimage. 2012;61:1300–1310. doi:10.1016/j.neuroimage.2012.04.018
  • Baker DH, Vilidaite G, Lygo FA, et al. Power contours: optimising sample size and precision in experimental psychology and human neuroscience. Psychol Methods. 2021;26:295–314. doi:10.1037/met0000337
  • Geuter S, Qi G, Welsh RC, Wager TD, Lindquist MA. Effect size and power in fMRI group analysis. bioRxiv. 2018;295048. doi:10.1101/295048