345
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Green Nanotechnology of Yucca filamentosa- Phytochemicals-Functionalized Gold Nanoparticles—Antitumor Efficacy Against Prostate and Breast Cancers

ORCID Icon, , , &
Pages 19-40 | Received 30 Aug 2023, Accepted 29 Nov 2023, Published online: 10 Dec 2023

References

  • WHO. WHO establishes the global centre for traditional medicine in India; 2022. Available from: https://www.who.int/news/item/25-03-2022-who-establishes-the-global-centre-for-traditional-medicine-in-india. Accessed September 28, 2022.
  • Kattumuri V, Katti KK, Bhaskaran S, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333–341. doi:10.1002/smll.200600427
  • Mohan RR, Sinha S, Katti KV, Kannan R, Stapleton WM, Schultz GS. Evaluation of polymeric- and gold-nanoparticles for gene delivery in the cornea. Invest Ophthalmol Vis Sci. 2007;48(13):2733.
  • Fent GM, Casteel SW, Kim DY, et al. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomedicine. 2009;5(2):128–135. doi:10.1016/j.nano.2009.01.007
  • Chanda N, Shukla R, Katti KV, Kannan R. Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett. 2009;9(5):1798–1805. doi:10.1021/nl8037147
  • Katti KK, Kattumuri V, Bhaskaran S, Katti KV, Kannan R. Facile and general method for synthesis of sugar-coated gold nanoparticles. Int J Green Nanotechnol Biomed. 2009;1(1):B53–B59. doi:10.1080/19430850902983848
  • Nune SK, Chanda N, Shukla R, et al. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem. 2009;19(19):2912–2920. doi:10.1039/b822015h
  • Katti KK, Chanda N, Shukla R, et al. Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotechnol Biomed. 2009;1(1):B39–B52.
  • Chanda N, Kattumuri V, Shukla R, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci. 2010;107(19):8760–8765. doi:10.1073/pnas.1002143107
  • Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR. Laminin receptor specific therapeutic gold efficacy in treating prostate cancer. Proc Natl Acad Sci. 2012;109(31):12426–12431. doi:10.1073/pnas.1121174109
  • Khoobchandani M, Zambre A, Katti KK, ho LC, Katti KVK. Green nanotechnology from Brassicaceae: development of broccoli phytochemicals – encapsulated gold nanoparticles and their applications in nanomedicine. Int J Green Nanotechnol. 2013;1:1–15. doi:10.1177/1943089213509474
  • Gamal-Eldeen AM, Moustafa D, El-Daly SM, et al. Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice. J Photochem Photobiol B. 2016;163:47–56. doi:10.1016/j.jphotobiol.2016.08.009
  • Geraldes AN, Alves A, Leal J, et al. Green nanotechnology from plant extracts: synthesis and characterization of gold nanoparticles. ANP. 2016;5(3):176–185. doi:10.4236/anp.2016.53019
  • Gamal-Eldeen AM, Moustafa D, El-Daly SM, et al. Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed Pharmacother. 2017;89:1045–1054. doi:10.1016/j.biopha.2017.03.006
  • Katti KV, Khoobchandani M, Thipe VC, et al. Prostate tumor therapy advances in nuclear medicine: green nanotechnology toward the design of tumor specific radioactive gold nanoparticles. J Radioanal Nucl Chem. 2018;318(3):1737–1747. doi:10.1007/s10967-018-6320-4
  • Tangthong T, Piroonpan T, Thipe VC, et al. Water-soluble chitosan conjugated DOTA-bombesin peptide capped gold nanoparticles as a targeted therapeutic agent for prostate cancer. Nanotechnol Sci Appl. 2021;14(14):69–89. doi:10.2147/NSA.S301942
  • Thipe VC, Karikachery AR, Çakılkaya P, et al. Green nanotechnology—an innovative pathway towards biocompatible and medically relevant gold nanoparticles. J Drug Deliv Sci Technol. 2022;70:103256.
  • Maziero J, Thipe V, Rogero S, et al. Species specific in vitro and in vivo evaluation of toxicity of silver nanoparticles stabilized with arabic gum protein. Int J Nanomedicine. 2020;15:7359–7376. doi:10.2147/IJN.S250467
  • De Canha MN, Thipe VC, Katti KV, et al. The activity of gold nanoparticles synthesized using helichrysum odoratissimum against cutibacterium acnes biofilms. Front Cell Dev Biol. 2021;9(1):1–16. doi:10.3389/fcell.2021.675064
  • Thipe VC, Amiri KP, Bloebaum P, et al. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomedicine. 2019;14:4413–4428. doi:10.2147/IJN.S204443
  • Thipe VC, Njobeh PB, Mhlanga SD. Optimization of commercial antibiotic agents using gold nanoparticles against toxigenic Aspergillus spp. Mater Today Proc. 2015;2(7):4136–4148. doi:10.1016/j.matpr.2015.08.044
  • Khoobchandani M, Katti KK, Karikachery AR, et al. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine - pre-clinical and pilot human clinical investigations. Int J Nanomedicine. 2020;15:181–197. doi:10.2147/IJN.S219042
  • Lambrechts IA, Thipe VC, Katti KV, et al. Targeting acne bacteria and wound healing in vitro using Plectranthus aliciae, rosmarinic acid, and tetracycline gold nanoparticles. Pharmaceuticals. 2022;15(8):933. doi:10.3390/ph15080933
  • Khoobchandani M, Khan A, Katti KK, et al. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep. 2021;11(1):16797. doi:10.1038/s41598-021-96224-8
  • Sibuyi NRS, Thipe VC, Panjtan-Amiri K, Meyer M, Katti KV. Green synthesis of gold nanoparticles using acai berry and elderberry extracts and investigation of their effect on prostate and pancreatic cancer cells. BJGP Open. 2021;8:1–8.
  • Plock A, Beyer G, Hiller K, et al. Application of MS and NMR to the structure elucidation of complex sugar moieties of natural products: exemplified by the steroidal saponin from Yucca filamentosa L. Phytochemistry. 2001;57(3):489–496. doi:10.1016/s0031-9422(01)00035-8
  • Culhuac EB, Maggiolino A, Elghandour MMMY, De Palo P, Salem AZM. Antioxidant and anti-inflammatory properties of phytochemicals found in the yucca genus. Antioxidants. 2023;12(3):574. doi:10.3390/antiox12030574
  • Adegbeye MJ, Elghandour MMMY, Monroy JC, et al. Potential influence of yucca extract as feed additive on greenhouse gases emission for a cleaner livestock and aquaculture farming - A review. J Clean Prod. 2019;239(3):118074. doi:10.1016/j.jclepro.2019.118074
  • Jiménez GG, Durán AG, Macías FA, Simonet AM. Structure, bioactivity and analytical methods for the determination of yucca saponins. Molecules. 2021;26(17):5251. doi:10.3390/molecules26175251
  • Cheeke PR, Piacente S, Oleszek W. Anti-inflammatory and anti-arthritic effects of yucca schidigera: a review. J Inflamm. 2006;3. doi:10.1186/1476-9255-3-6
  • Hans CP, Sharma N, Downey E, Khoobchandani M, Katti K, Katti KV. Mangiferin conjugated gold nanoparticles protect against the development of abdominal aortic aneurysm in an apoe−/− mouse model. JVS Vasc Sci. 2022;3:16–17.
  • Al-Yasiri AY, Khoobchandani M, Cutler CS, et al. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans. 2017;46(42):14561–14571. doi:10.1039/C7DT00383H
  • Katti K, Cutler C, Khoobchandani M, Katti K. The curators of the university of Missouri. Mangiferin encapsulated gold nanoparticles, fabrication methods and cancer therapeutic methods. United States patent US 11426357B2. 2022 Aug 30.
  • Katti K, Menka K, Kavita K, Chintamani J, Alsam K, Mutalik V. The curators of the University of Missouri. Ayurvedic encapsulated gold nanoparticles, fabrication methods and cancer therapeutic methods. United States patent US 011547720B2; 2023 Jan 10.
  • Patil-Bhole T, Wele A, Gudi R, et al. Nanostructured gold in ancient ayurvedic calcined drug ‘swarnabhasma. J Ayurveda Integr Med. 2021. doi:10.1016/j.jaim.2021.06.017
  • Pal D, Sahu CK, Haldar A. Bhasma: the ancient Indian nanomedicine. J Adv Pharm Technol Res. 2014;5(1):4–12. doi:10.4103/2231-4040.126980
  • Shingadiya R, Chaudhary S, Joshi K, Bedarkar P, Patgiri B, Prajapati P. Evidence-based safety and efficacy of ayurvedic herbo-metallic preparations containing gold, iron, and mercury with special reference to pediatrics. Med J DY Patil Univ. 2017;10(3):222–228. doi:10.4103/0975-2870.206579
  • Lei Z, Jing L, Qiu F, et al. Construction of an ultrahigh pressure liquid chromatography-tandem mass spectral library of plant natural products and comparative spectral analyses. Anal Chem. 2015;87(14):7373–7381. doi:10.1021/acs.analchem.5b01559
  • Lin N, Liu B, Zhang J, et al. Acute toxicity, 28-day repeated-dose toxicity and toxicokinetic study of timosaponin BII in rats. Regul Toxicol Pharmacol. 2017;90(27):244–257. doi:10.1016/j.yrtph.2017.09.021
  • Wang N, Xu P, Wu R, et al. Timosaponin BII improved osteoporosis caused by hyperglycemia through promoting autophagy of osteoblasts via suppressing the mTOR/NFκB signaling pathway. Free Radic Biol Med. 2021;171(April):112–123. doi:10.1016/j.freeradbiomed.2021.05.014
  • Zhou F, Liu BF, Wang C, et al. Acute toxicity, 28-day repeated-dose toxicity and toxicokinetic study of timosaponin BII in beagle dogs. J Asian Nat Prod Res. 2022;24(9):860–876.
  • Ceylan R, Demirbas A, Ocsoy I, Aktumsek A. Green synthesis of silver nanoparticles using aqueous extracts of three Sideritis species from Turkey and evaluations bioactivity potentials. Sustain Chem Pharm. 2021;21(November 2020):100426. doi:10.1016/j.scp.2021.100426
  • Albeladi SSR, Malik MA, Al-Thabaiti SA. Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation. J Mater Res Technol. 2020;9(5):10031–10044. doi:10.1016/j.jmrt.2020.06.074
  • Unal IS, Demirbas A, Onal I, Ildiz N, Ocsoy I. One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. J Photochem Photobiol B. 2020;204(August 2019):111800. doi:10.1016/j.jphotobiol.2020.111800
  • Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20(4):840. doi:10.3390/ijms20040840
  • Daßler-Plenker J, Küttner V, Egeblad M. Communication in tiny packages: exosomes as means of tumor-stroma communication. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188340. doi:10.1016/j.bbcan.2020.188340
  • Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci. 2022;29(1):83. doi:10.1186/s12929-022-00866-3
  • Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signaling. 2020;18(1):59. doi:10.1186/s12964-020-0530-4
  • Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5(1):166. doi:10.1038/s41392-020-00280-x
  • Chen PC, Cheng HC, Wang J, et al. Prostate cancer-derived CCN3 induces M2 macrophage infiltration and contributes to angiogenesis in prostate cancer microenvironment. Oncotarget. 2014;5(6):1595–1608. doi:10.18632/oncotarget.1570
  • Zhang M, Pan X, Fujiwara K, et al. Pancreatic cancer cells render tumor-associated macrophages metabolically reprogrammed by a GARP and DNA methylation-mediated mechanism. Signal Transduct Target Ther. 2021;6(1):1.
  • Jadrzejewski T, Pawlikowska M, Sobociåska J, Wrotek S. Protein-bound polysaccharides from coriolus versicolor fungus disrupt the crosstalk between breast cancer cells and macrophages through inhibition of angiogenic cytokines production and shifting tumour-associated macrophages from the M2 to M1 subtype. Cell Physiol Biochem. 2020;54(4):615–628.
  • Deng D, Patel R, Chiang CY, Hou P. Role of the tumor microenvironment in regulating pancreatic cancer therapy resistance. Cells. 2022;11(19):2952. doi:10.3390/cells11192952
  • Sinha S, McKnight D, Katti KV, et al. Gold nanoparticles stabilized in gum arabic for corneal gene therapy. Invest Ophthalmol Vis Sci. 2008;49(13):4787.
  • Gamal-Eldeen AM, Moustafa D, El-Daly SM, Katti KV. P0131 efficacy of gum arabic-conjugated gold nanoparticles as a photothermal therapy for lung cancer: in vitro and in vivo approaches. Eur J Cancer. 2014;50:e46. doi:10.1016/j.ejca.2014.03.175
  • Bryan JN, Henry CJ, Boote E, et al. Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomedicine. 2014;9(October):5001–5011. doi:10.2147/IJN.S67333
  • Chanda N, Upendran A, Boote EJ, et al. Gold nanoparticle based X-ray contrast agent for tumor imaging in mice and dog: a potential nano-platform for computer tomography theranostics. J Biomed Nanotechnol. 2014;10(3):383–392. doi:10.1166/jbn.2014.1725
  • Cutler C, Al-Yasiri A, Kuchuk M, et al. Comparison of in vivo uptake of radioactive gold nanoparticles formulated using phytochemicals. J Nucl Med. 2015;56(supplement 3):1267 LP–1267.
  • Kannan R, Zambre A, Chanda N, et al. Functionalized radioactive gold nanoparticles in tumor therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(1):42–51. doi:10.1002/wnan.161
  • Kumari M, Sharma N, Manchanda R, et al. PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci Rep. 2021;11(1):1–17. doi:10.1038/s41598-021-81701-x
  • Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8(1). doi:10.1038/s41392-023-01536-y
  • Krishnamurthy S, Esterle A, Sharma NC, Sahi SV. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res Lett. 2014;9(1):1–9. doi:10.1186/1556-276X-9-627
  • Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799–820. doi:10.1038/s41573-022-00520-5
  • Balakrishnan A, Vig M, Dubey S. Role of myeloid cells in the tumor microenvironment. J Cancer Metastasis Treat. 2022;8(5):27. doi:10.20517/2394-4722.2022.33
  • Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):6995. doi:10.3390/ijms22136995
  • Mishra AK, Banday S, Bharadwaj R, et al. Macrophages as a potential immunotherapeutic target in solid cancers. Vaccines. 2023;11(1):1–30.
  • Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The role of macrophages in cancer development and therapy. Cancers. 2021;13(8):1946. doi:10.3390/cancers13081946
  • Yuan Y, Long L, Liu J, et al. The double-edged sword effect of macrophage targeting delivery system in different macrophage subsets related diseases. J Nanobiotechnology. 2020;18(1):1–14. doi:10.1186/s12951-020-00721-3
  • Zou Z, Lin H, Li M, Lin B. Tumor−associated macrophage polarization in the inflammatory tumor microenvironment. Front Oncol. 2023;13:1103149.
  • Yuan P, Xu X, Hu D, et al. Highly sensitive imaging of tumor metastasis based on the targeting and polarization of M2-like macrophages. J Am Chem Soc. 2023;145(14):7941–7951. doi:10.1021/jacs.2c13218