121
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 77-94 | Received 02 Nov 2023, Accepted 06 Feb 2024, Published online: 20 Mar 2024

References

  • Fogsgaard KK, Røntved CM, Sørensen P, Herskin MS. Sickness behavior in dairy cows during Escherichia coli mastitis. J Dairy Sci. 2012;95:630–638. doi:10.3168/jds.2011-4350
  • Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas J Anim Sci. 2020;33:1699–1713. doi:10.5713/ajas.20.0156
  • Ranjan R, Swarup D, Patra RC, Nandi D. Bovine protothecal mastitis: a review. CAB Rev. 2015;1. doi:10.1079/PAVSNNR20061017
  • Adeyemi OS, Sulaiman FA. Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res. 2015;29:145–149. doi:10.7555/JBR.28.20130096
  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42:46–56. doi:10.1128/am.26.4.648-649.1973
  • Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J Fungi. 2021;7:1033. doi:10.1016/j.molstruc.2021.131017
  • Benelli G. Gold nanoparticles–against parasites and insect vectors. Acta Trop. 2018;178:73–80. doi:10.1016/j.actatropica.2017.10.021
  • Rai M, Ingle AP, BirlaS Y, Santos CAD. A. Strategic role of selected noble metal nanoparticles in medicine. Crit. Rev Microbiol. 2016;42:696–719. doi:10.3109/1040841X.2015.1018131
  • Al-Farraj ES, Alahmadi M, Mohamed WS, Alsaedi WH, Abu-Dief AM. Development of VSe2@ Cu2Se nano-composites via facile one-pot hydrothermal method for pharmaceutical applications. Phys Scr. 2023;98:095004. doi:10.1088/1402-4896/aceada
  • Dhanjal DS, Mehra P, Bhardwaj S, et al. Mycology-nanotechnology interface: applications in medicine and cosmetology. Int J Nanomed. 2022;17:2505–2533. doi:10.2147/IJN.S363282
  • Abu-Dief AM, Alrashedee FM, Emran KM, Al-Abdulkarim HA. Development of some magnetic metal–organic framework nano composites for pharmaceutical applications. Inorg Chem Commun. 2022;138:109251. doi:10.1016/j.inoche.2022.109251
  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog. 2018;123:505–526. doi:10.1016/j.micpath.2018.08.008
  • Bashal AH, Khalil KD, Abu-Dief AM, El-Atawy MA. Cobalt oxide-chitosan based nanocomposites: synthesis, characterization and their potential pharmaceutical applications. Int J Biol Macromol. 2023;253:126856. doi:10.1016/j.ijbiomac.2023.126856
  • Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257–262. doi:10.1016/j.nano.2009.07.002
  • Kowshik M, Ashtaputre S, Kharrazi S, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003;14:95. doi:10.1088/0957-4484/14/1/321
  • Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003;85:162–170.
  • Armendariz V, Herrera I, Peralta-Videa JR, et al. Size controlled gold nanoparticle formation by avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res. 2004;6:377–382.
  • Ekrikaya S, Yilmaz E, Celik C, et al. Investigation of ellagic acid rich-berry extracts directed silver nanoparticles synthesis and their antimicrobial properties with potential mechanisms towards enterococcus faecalis and candida albicans. J Biotechnol. 2021;341:155–162. doi:10.1016/j.jbiotec.2021.09.020
  • Abu‐Dief AM, Abdel‐Rahman LH, Abd‐El Sayed MA, Zikry MM, Nafady A. Green synthesis of AgNPs() ultilizing Delonix regia extract as anticancer and antimicrobial agents. ChemistrySelect. 2020;5:13263–13268. doi:10.1002/slct.202003218
  • Koca FD, Demirezen Yilmaz D, Duman F, Ocsoy I. Comparison of phytotoxic effects of bio-synthesised copper oxide nanoparticle and ionic copper on elodea canadensis. Chem Eco. 2018;34:839–853. doi:10.1080/02757540.2018.1494162
  • Ceylan R, Demirbas A, Ocsoy I, Aktumsek A. Green synthesis of silver nanoparticles using aqueous extracts of three sideritis species from Turkey and evaluations bioactivity potentials. sustain. Chem Pharm. 2021;21:100426. doi:10.1016/j.scp.2021.100426
  • Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: a review. Biomed J Sci Tech Res. 2018;4:3765–3775. doi:10.26717/BJSTR.2018.04.001011
  • Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13:223–245. doi:10.1080/17518253.2020.1802517
  • Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156:1–13. doi:10.1016/j.cis.2010.02.001
  • Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7:doi:10.1002/adhm.201701503
  • Radzikowski D, Kalińska A, Ostaszewska U, Gołębiewski M. Alternative solutions to antibiotics in mastitis treatment for dairy cows - a review. Anim Sci Pap Rep. 2020;38:117–133.
  • Lange A, Grzenia A, Wierzbicki M, et al. Silver and copper nanoparticles inhibit biofilm formation by mastitis pathogens. Animals. 2021;11:1884. doi:10.3390/ani11071884
  • Kalińska A, Jaworski S, Wierzbicki M, Gołębiewski M. Silver and copper nanoparticles—an alternative in future mastitis treatment and prevention? Int J Mol Sci. 2019;20:1672. doi:10.3390/ijms20071672
  • Lange A, Sawosz E, Wierzbicki M, et al. Nanocomposites of graphene oxide—silver nanoparticles for enhanced antibacterial activity: mechanism of action and medical textiles coating. Materials. 2022;15(9):3122. doi:10.3390/ma15093122
  • Lange A, Sawosz E, Daniluk K, et al. Bacterial surface disturbances affecting cell function during exposure to three-compound nanocomposites based on graphene materials. Nanomaterials. 2022;12(17):3058. doi:10.3390/nano12173058
  • Pore RS. Selective medium for the isolation of Prototheca. Appl Microbiol. 1973;26(4):648–649. doi:10.1128/am.26.4.648-649.1973
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848. doi:10.1016/j.cca.2010.08.016
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–327. doi:10.1002/smll.200400093
  • Aljohani ET, Shehata R, Abu‐Dief AM. Design, synthesis, structural inspection of Pd2+, VO2+, Mn2+, and Zn2+ chelates incorporating ferrocenyl thiophenol ligand: DNA interaction and pharmaceutical studies. App Organomet Chem. 2021;35:e6169. doi:10.1002/aoc.6169
  • Abu-Dief AM, El-khatib RM, El Sayed SM, et al. Tailoring, structural elucidation, DFT calculation, DNA interaction and pharmaceutical applications of some aryl hydrazone Mn (II), Cu (II) and Fe (III) complexes. J Mol Struct. 2021;1244:131017. doi:10.1016/j.molstruc.2021.131017
  • Wernicki A, Puchalski A, Urban-Chmiel R, et al. Antimicrobial properties of gold, silver, copper and platinum nanoparticles against selected microorganisms isolated from cases of mastitis in cattle. Med Weter. 2014;70:564–567.
  • Dehkordi SH, Hosseinpour F, Kahrizangi AE. An in vitro evaluation of antibacterial effect of silver nanoparticles on staphylococcus aureus isolated from bovine subclinical mastitis. Afr J Biotechnol. 2011;10:10795–10797. doi:10.5897/AJB11.1499
  • Abdel-Rahman LH, Al-Farhan BS, Abou El-ezz D, Abd–El Sayed MA, Zikry MM, Abu-Dief AM. Green biogenic synthesis of silver nanoparticles using aqueous extract of moringa oleifera: access to a powerful antimicrobial, anticancer, pesticidal and catalytic agents. J Inorg Organomet Polym. 2022;32:1422–1435. doi:10.1007/s10904-021-02186-9
  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6:1388–1401. doi:10.1021/mp900056g
  • Mekky AE, Farrag AA, Hmed AA, Sofy AR. Antibacterial and antifungal activity of green-synthesized silver nanoparticles using Spinacia oleracea leaves extract. Egypt J Chem. 2021;64:5781–5792. doi:10.21608/EJCHEM.2021.74432.3673
  • Ely VL, Pereira DIB, da Costa MM, et al. Activity of biogenic silver nanoparticles against isolates of prototheca species from bovine mastitis. Lett Appl Microbiol. 2022;75:24–28. doi:10.3168/jds.2011-4350
  • Kot M, Kalińska A, Jaworski S, Wierzbicki M, Smulski S, Gołębiewski M. In vitro studies of nanoparticles as a potentially new antimicrobial agent for the prevention and treatment of lameness and digital dermatitis in cattle. Int J Mol Sci. 2023;24:6146. doi:10.1016/j.micpath.2018.08.008
  • Abu-Dief AM, El-Khatib RM, Aljohani FS, et al. Synthesis and intensive characterization for novel Zn (II), Pd (II), Cr (III) and VO (II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J Mol Struct. 2021;1242:130693. doi:10.5713/ajas.20.0156
  • Mohamad ADM, Abualreish MJA, Abu-Dief AM. Antimicrobial and anticancer activities of cobalt (III)-hydrazone complexes: solubilities and chemical potentials of transfer in different organic co-solvent-water mixtures. J Mol Liq. 2019;290:111162. doi:10.1002/adhm.201701503