641
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

The Underlying Mechanisms of Sleep Deprivation Exacerbating Neuropathic Pain

& ORCID Icon
Pages 579-591 | Received 25 Mar 2023, Accepted 25 Jul 2023, Published online: 28 Jul 2023

References

  • Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32. doi:10.1146/annurev.neuro.051508.135531
  • Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333. doi:10.1016/j.ejpain.2005.06.009
  • Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082–2097. doi:10.1016/S0140-6736(21)00393-7
  • Afolalu EF, Ramlee F, Tang NKY. Effects of sleep changes on pain-related health outcomes in the general population: a systematic review of longitudinal studies with exploratory meta-analysis. Sleep Med Rev. 2018;39:82–97. doi:10.1016/j.smrv.2017.08.001
  • Nissen A, Hynek KA, Scales D, Hilden PK, Straiton M. Chronic pain, mental health and functional impairment in adult refugees from Syria resettled in Norway: a cross-sectional study. BMC Psychiatry. 2022;22(1):571. doi:10.1186/s12888-022-04200-x
  • Blyth FM, Noguchi N. Chronic musculoskeletal pain and its impact on older people. Best Pract Res Clin Rheumatol. 2017;31(2):160–168. doi:10.1016/j.berh.2017.10.004
  • Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002;6(2):97–111. doi:10.1053/smrv.2002.0186
  • Shin DS, Jeong BY. Older female farmers and modeling of occupational hazards, wellbeing, and sleep-related problems on musculoskeletal pains. Int J Environ Res Public Health. 2022;19(12):7274. doi:10.3390/ijerph19127274
  • Alghadir AH, Khan M, Alshehri MM, Alqahtani AS, Aldaihan M. In hypertensive individuals, sleep time and sleep efficiency did not affect the number of angina episodes: a cross-sectional study. Sci Rep. 2022;12(1):16290. doi:10.1038/s41598-022-20255-y
  • Jolly T, Vadukapuram R, Trivedi C, et al. Risk of suicide in patients with major depressive disorder and comorbid chronic pain disorder: an insight from national inpatient sample data. Pain Physician. 2022;25(6):419–425.
  • Lazaridou A, Paschali M, Zgierska AE, Garland EL, Edwards RR. Exploring the relationship between endogenous pain modulation, pain intensity, and depression in patients using opioids for chronic low back pain. Clin J Pain. 2022;38(10):595–600. doi:10.1097/AJP.0000000000001063
  • Krause AJ, Prather AA, Wager TD, Lindquist MA, Walker MP. The pain of sleep loss: a brain characterization in humans. J Neurosci. 2019;39(12):2291–2300. doi:10.1523/JNEUROSCI.2408-18.2018
  • Chang JR, Fu SN, Li X, et al. The differential effects of sleep deprivation on pain perception in individuals with or without chronic pain: a systematic review and meta-analysis. Sleep Med Rev. 2022;66:101695. doi:10.1016/j.smrv.2022.101695
  • Staffe AT, Bech MW, Clemmensen SLK, Nielsen HT, Larsen DB, Petersen KK. Total sleep deprivation increases pain sensitivity, impairs conditioned pain modulation and facilitates temporal summation of pain in healthy participants. PLoS One. 2019;14(12):e0225849. doi:10.1371/journal.pone.0225849
  • Schrimpf M, Liegl G, Boeckle M, Leitner A, Geisler P, Pieh C. The effect of sleep deprivation on pain perception in healthy subjects: a meta-analysis. Sleep Med. 2015;16(11):1313–1320. doi:10.1016/j.sleep.2015.07.022
  • Li Q, Zhu ZY, Lu J, et al. Sleep deprivation of rats increases postsurgical expression and activity of L-type calcium channel in the dorsal root ganglion and slows recovery from postsurgical pain. Acta Neuropathol Commun. 2019;7(1):217. doi:10.1186/s40478-019-0868-2
  • Stump PR, Dalben Gda S. Mechanisms and clinical management of pain. Braz Oral Res. 2012;26(Suppl 1):115–119. doi:10.1590/S1806-83242012000700017
  • Pricope CV, Tamba BI, Stanciu GD, et al. The roles of imaging biomarkers in the management of chronic neuropathic pain. Int J Mol Sci. 2022;23(21):13038. doi:10.3390/ijms232113038
  • Zimmer Z, Fraser K, Grol-Prokopczyk H, Zajacova A. A global study of pain prevalence across 52 countries: examining the role of country-level contextual factors. Pain. 2022;163(9):1740–1750. doi:10.1097/j.pain.0000000000002557
  • Giovannini S, Coraci D, Brau F, et al. Neuropathic pain in the elderly. Diagnostics. 2021;11(4):613. doi:10.3390/diagnostics11040613
  • Simon KC, Nadel L, Payne JD. The functions of sleep: a cognitive neuroscience perspective. Proc Natl Acad Sci U S A. 2022;119(44):e2201795119. doi:10.1073/pnas.2201795119
  • Barbato G. REM sleep: an unknown indicator of sleep quality. Int J Environ Res Public Health. 2021;18(24):12976. doi:10.3390/ijerph182412976
  • Helfrich-Förster C. Sleep in insects. Annu Rev Entomol. 2018;63(1):69–86. doi:10.1146/annurev-ento-020117-043201
  • Weigend S, Holst SC, Treyer V, et al. Dynamic changes in cerebral and peripheral markers of glutamatergic signaling across the human sleep-wake cycle. Sleep. 2019;42(11). doi:10.1093/sleep/zsz161
  • Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science. 2022;375(6584):994–1000. doi:10.1126/science.abl6618
  • Oikonomou G, Altermatt M, Zhang RW, et al. The serotonergic raphe promote sleep in zebrafish and mice. Neuron. 2019;103(4):686–701.e8. doi:10.1016/j.neuron.2019.05.038
  • Cespuglio R. Serotonin: its place today in sleep preparation, triggering or maintenance. Sleep Med. 2018;49:31–39. doi:10.1016/j.sleep.2018.05.034
  • Kjaerby C, Andersen M, Hauglund N, et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci. 2022;25(8):1059–1070. doi:10.1038/s41593-022-01102-9
  • Mitchell HA, Weinshenker D. Good night and good luck: norepinephrine in sleep pharmacology. Biochem Pharmacol. 2010;79(6):801–809. doi:10.1016/j.bcp.2009.10.004
  • McCarter SJ, Hagen PT, St Louis EK, et al. Physiological markers of sleep quality: a scoping review. Sleep Med Rev. 2022;64:101657. doi:10.1016/j.smrv.2022.101657
  • Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325–1380. doi:10.1152/physrev.00010.2018
  • Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146(5):1387–1394. doi:10.1378/chest.14-0970
  • Morphy H, Dunn KM, Lewis M, Boardman HF, Croft PR. Epidemiology of insomnia: a longitudinal study in a UK population. Sleep. 2007;30(3):274–280.
  • Jansson-Fröjmark M, Boersma K. Bidirectionality between pain and insomnia symptoms: a prospective study. Br J Health Psychol. 2012;17(2):420–431. doi:10.1111/j.2044-8287.2011.02045.x
  • Lautenbacher S, Kundermann B, Krieg JC. Sleep deprivation and pain perception. Sleep Med Rev. 2006;10(5):357–369. doi:10.1016/j.smrv.2005.08.001
  • Habib G, Khazin F, Artul S, Aloisi AM. The effect of medical cannabis on pain level and quality of sleep among rheumatology clinic outpatients. Pain Res Manag. 2021;2021:1756588. doi:10.1155/2021/1756588
  • Leys LJ, Chu KL, Xu J, et al. Disturbances in slow-wave sleep are induced by models of bilateral inflammation, neuropathic, and postoperative pain, but not osteoarthritic pain in rats. Pain. 2013;154(7):1092–1102. doi:10.1016/j.pain.2013.03.019
  • Cardis R, Lecci S, Fernandez LM, et al. Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain. Elife. 2021;10. doi:10.7554/eLife.65835
  • Alexandre C, Latremoliere A, Ferreira A, et al. Decreased alertness due to sleep loss increases pain sensitivity in mice. Nat Med. 2017;23(6):768–774. doi:10.1038/nm.4329
  • Chen S, Xie Y, Li Y, et al. Sleep deprivation and recovery sleep affect healthy male resident’s pain sensitivity and oxidative stress markers: the medial prefrontal cortex may play a role in sleep deprivation model. Front Mol Neurosci. 2022;15:937468. doi:10.3389/fnmol.2022.937468
  • Nosek K, Leppert W, Puchała Ł, Łoń K. Efficacy and safety of topical morphine: a narrative review. Pharmaceutics. 2022;14(7):1499. doi:10.3390/pharmaceutics14071499
  • Sanchez GA, Jutkiewicz EM, Ingram S, Smrcka AV. Coincident regulation of PLCβ signaling by Gq-coupled and μ-opioid receptors opposes opioid-mediated antinociception. Mol Pharmacol. 2022;102(6):269–279. doi:10.1124/molpharm.122.000541
  • Roeckel LA, Utard V, Reiss D, et al. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci Rep. 2017;7(1):10406. doi:10.1038/s41598-017-11120-4
  • Leppä M, Korvenoja A, Carlson S, et al. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage. 2006;31(2):661–669. doi:10.1016/j.neuroimage.2005.12.019
  • Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci. 2022;16:1014768. doi:10.3389/fnsys.2022.1014768
  • Bai X, Batallé G, Balboni G, Pol O. Hydrogen sulfide increases the analgesic effects of µ- and Δ-opioid receptors during neuropathic pain: pathways implicated. Antioxidants. 2022;11(7):1321. doi:10.3390/antiox11071321
  • Ziegler D, Papanas N, Schnell O, et al. Current concepts in the management of diabetic polyneuropathy. J Diabetes Investig. 2021;12(4):464–475. doi:10.1111/jdi.13401
  • Celik M, Labuz D, Henning K, et al. Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides. Brain Behav Immun. 2016;57:227–242. doi:10.1016/j.bbi.2016.04.018
  • Robertson RV, Crawford LS, Meylakh N, et al. Regional hypothalamic, amygdala, and midbrain periaqueductal gray matter recruitment during acute pain in awake humans: a 7-Tesla functional magnetic resonance imaging study. Neuroimage. 2022;259:119408. doi:10.1016/j.neuroimage.2022.119408
  • Presto P, Neugebauer V. Sex differences in CGRP regulation and function in the amygdala in a rat model of neuropathic pain. Front Mol Neurosci. 2022;15:928587. doi:10.3389/fnmol.2022.928587
  • Zhu Y, Sun M, Liu P, Shao W, Xiong M, Xu B. Perioperative stress prolong post-surgical pain via miR-339-5p targeting oprm1 in the amygdala. Korean J Pain. 2022;35(4):423–432. doi:10.3344/kjp.2022.35.4.423
  • Skinner GO, Damasceno F, Gomes A, de Almeida OM. Increased pain perception and attenuated opioid antinociception in paradoxical sleep-deprived rats are associated with reduced tyrosine hydroxylase staining in the periaqueductal gray matter and are reversed by L-dopa. Pharmacol Biochem Behav. 2011;99(1):94–99. doi:10.1016/j.pbb.2011.04.009
  • Smith MT, Mun CJ, Remeniuk B, et al. Experimental sleep disruption attenuates morphine analgesia: findings from a randomized trial and implications for the opioid abuse epidemic. Sci Rep. 2020;10(1):20121. doi:10.1038/s41598-020-76934-1
  • Tomim DH, Pontarolla FM, Bertolini JF, et al. The pronociceptive effect of paradoxical sleep deprivation in rats: evidence for a role of descending pain modulation mechanisms. Mol Neurobiol. 2016;53(3):1706–1717. doi:10.1007/s12035-014-9059-0
  • Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt HP. Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci. 2014;34(2):566–573. doi:10.1523/JNEUROSCI.4128-13.2014
  • Ueno T, Tomita J, Tanimoto H, et al. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci. 2012;15(11):1516–1523. doi:10.1038/nn.3238
  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21(5):1787–1794. doi:10.1523/JNEUROSCI.21-05-01787.2001
  • Moderie C, Carrier J, Dang-Vu TT. Les troubles du sommeil chez les patients atteints d'un trouble neurocognitif [Sleep disorders in patients with a neurocognitive disorder]. Encephale. 2022;48(3):325–334. French. doi:10.1016/j.encep.2021.08.014
  • Li C, Liu S, Lu X, Tao F. Role of descending dopaminergic pathways in pain modulation. Curr Neuropharmacol. 2019;17(12):1176–1182. doi:10.2174/1570159X17666190430102531
  • Edwards S, Callicoatte CN, Barattini AE, et al. Pramipexole treatment attenuates mechanical hypersensitivity in male rats experiencing chronic inflammatory pain. Neuropharmacology. 2022;208:108976. doi:10.1016/j.neuropharm.2022.108976
  • Li C, Sugam JA, Lowery-Gionta EG, et al. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: a role in regulation of pain. Neuropsychopharmacology. 2016;41(8):2122–2132. doi:10.1038/npp.2016.12
  • Taylor NE, Pei J, Zhang J, et al. The Role of glutamatergic and dopaminergic neurons in the periaqueductal gray/dorsal raphe: separating analgesia and anxiety. eNeuro. 2019;6(1):ENEURO.0018–18.2019. doi:10.1523/ENEURO.0018-18.2019
  • Lau BK, Winters BL, Vaughan CW. Opioid presynaptic disinhibition of the midbrain periaqueductal grey descending analgesic pathway. Br J Pharmacol. 2020;177(10):2320–2332. doi:10.1111/bph.14982
  • Fu YT, Mao CJ, Ma LJ, et al. Pain correlates with sleep disturbances in parkinson’s disease patients. Pain Pract. 2018;18(1):29–37. doi:10.1111/papr.12578
  • Thompson T, Gallop K, Correll CU, et al. Pain perception in Parkinson’s disease: a systematic review and meta-analysis of experimental studies. Ageing Res Rev. 2017;35:74–86. doi:10.1016/j.arr.2017.01.005
  • Asakura W, Matsumoto K, Ohta H, Watanabe H. REM sleep deprivation decreases apomorphine-induced stimulation of locomotor activity but not stereotyped behavior in mice. Gen Pharmacol. 1992;23(3):337–341. doi:10.1016/0306-3623(92)90092-X
  • Vanini G. Nucleus accumbens: a novel forebrain mechanism underlying the increase in pain sensitivity caused by rapid eye movement sleep deprivation. Pain. 2018;159(1):5–6. doi:10.1097/j.pain.0000000000001073
  • Sardi NF, Tobaldini G, Morais RN, Fischer L. Nucleus accumbens mediates the pronociceptive effect of sleep deprivation: the role of adenosine A2A and dopamine D2 receptors. Pain. 2018;159(1):75–84. doi:10.1097/j.pain.0000000000001066
  • Kato T, Mitsukura Y, Yoshida K, Mimura M, Takata N, Tanaka KF. Oscillatory population-level activity of dorsal raphe serotonergic neurons is inscribed in sleep structure. J Neurosci. 2022;42(38):7244–7255. doi:10.1523/JNEUROSCI.2288-21.2022
  • Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep. 2022;74(1):1–26. doi:10.1007/s43440-021-00339-8
  • Zant JC, Leenaars CH, Kostin A, Van Someren EJ, Porkka-Heiskanen T. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res. 2011;1399:40–48. doi:10.1016/j.brainres.2011.05.008
  • Azizi H, Hwang J, Suen V, et al. Sleep deprivation induces changes in 5-HT actions and 5-HT(1A) receptor expression in the rat hippocampus. Neurosci Lett. 2017;655:151–155. doi:10.1016/j.neulet.2017.06.053
  • Zhao X, Ozols AB, Meyers KT, et al. Acute sleep deprivation upregulates serotonin 2A receptors in the frontal cortex of mice via the immediate early gene Egr3. Mol Psychiatry. 2022;27(3):1599–1610. doi:10.1038/s41380-021-01390-w
  • Ye H, Ji M, Wang C, et al. Integrated functional neuroimaging, monoamine neurotransmitters, and behavioral score on depressive tendency in intensive care unit medical staffs induced by sleep deprivation after night shift work. Front Psychiatry. 2022;13:848709. doi:10.3389/fpsyt.2022.848709
  • Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res Ther. 2011;13(2):211. doi:10.1186/ar3306
  • Li CJ, Zhang LG, Liu LB, et al. Inhibition of spinal 5-HT3 receptor and spinal dorsal horn neuronal excitability alleviates hyperalgesia in a rat model of parkinson’s disease. Mol Neurobiol. 2022;59(12):7253–7264. doi:10.1007/s12035-022-03034-8
  • Chuck AJ, Swannell AJ, House AO, Pownall R. The effects of dothiepin on subjects with rheumatoid arthritis and depression. Rheumatology. 2000;39(12):1425–1427. doi:10.1093/rheumatology/39.12.1425
  • Kim W, Chung Y, Choi S, Min BI, Kim SK. Duloxetine protects against oxaliplatin-induced neuropathic pain and spinal neuron hyperexcitability in rodents. Int J Mol Sci. 2017;18(12). doi:10.3390/ijms18122626
  • Siracusa R, Paola RD, Cuzzocrea S, Impellizzeri D. Fibromyalgia: pathogenesis, mechanisms, diagnosis and treatment options update. Int J Mol Sci. 2021;22(8):3891. doi:10.3390/ijms22083891
  • Wei H, Ma A, Wang YX, Pertovaara A. Role of spinal 5-HT receptors in cutaneous hypersensitivity induced by REM sleep deprivation. Pharmacol Res. 2008;57(6):469–475. doi:10.1016/j.phrs.2008.05.007
  • Thompson KI, Chau M, Lorenzetti MS, Hill LD, Fins AI, Tartar JL. Acute sleep deprivation disrupts emotion, cognition, inflammation, and cortisol in young healthy adults. Front Behav Neurosci. 2022;16:945661. doi:10.3389/fnbeh.2022.945661
  • Hunt CA, Smith MT, Mun CJ, Irwin MR, Finan PH. Trait positive affect buffers the association between experimental sleep disruption and inflammation. Psychoneuroendocrinology. 2021;129:105240. doi:10.1016/j.psyneuen.2021.105240
  • Irwin MR, Olmstead R, Kruse J, Breen EC, Haque R. Association of interleukin-8 and risk of incident and recurrent depression in long-term breast cancer survivors. Brain Behav Immun. 2022;105:131–138. doi:10.1016/j.bbi.2022.07.003
  • Raff H, Phillips J, Simpson P, Weisman SJ, Hainsworth KR. Interaction of chronic pain, obesity and time of day on cortisol in female human adolescents. Stress. 2022;25(1):331–336. doi:10.1080/10253890.2022.2142778
  • Fahmawi A, Khalifeh M, Alzoubi KH, Rababa’h AM. The effects of acute and chronic sleep deprivation on the immune profile in the rat. Curr Mol Pharmacol. 2022.
  • Dykstra-Aiello C, Koh KMS, Nguyen J, Xue M, Roy S, Krueger JM. A wake-like state in vitro induced by transmembrane TNF/soluble TNF receptor reverse signaling. Brain Behav Immun. 2021;94:245–258. doi:10.1016/j.bbi.2021.01.036
  • Oles V, Koh KMS, Dykstra-Aiello CJ, et al. Sleep- and time of day-linked RNA transcript expression in wild-type and IL1 receptor accessory protein-null mice. J Appl Physiol. 2020;128(6):1506–1522. doi:10.1152/japplphysiol.00839.2019
  • Chennaoui M, Gomez-Merino D, Drogou C, et al. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats. J Inflamm. 2015;12(1):56. doi:10.1186/s12950-015-0102-3
  • Zielinski MR, Krueger JM. Sleep and innate immunity. Front Biosci. 2011;3(2):632–642.
  • Smith C, Trageser KJ, Wu H, et al. Anxiolytic effects of NLRP3 inflammasome inhibition in a model of chronic sleep deprivation. Transl Psychiatry. 2021;11(1):52. doi:10.1038/s41398-020-01189-3
  • Aghelan Z, Karima S, Khazaie H, et al. Interleukin-1α and tumor necrosis factor α as an inducer for reactive-oxygen-species-mediated NOD-like receptor protein 1/NOD-like receptor protein 3 inflammasome activation in mononuclear blood cells from individuals with chronic insomnia disorder. Eur J Neurol. 2022;29(12):3647–3657. doi:10.1111/ene.15540
  • Krueger JM, Clinton JM, Winters BD, et al. Involvement of cytokines in slow wave sleep. Prog Brain Res. 2011;193:39–47.
  • Hou J, Shen Q, Wan X, Zhao B, Wu Y, Xia Z. REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res. 2019;364:167–176. doi:10.1016/j.bbr.2019.01.038
  • Krueger JM, Obál FJ, Fang J, Kubota T, Taishi P. The role of cytokines in physiological sleep regulation. Ann N Y Acad Sci. 2001;933:211–221. doi:10.1111/j.1749-6632.2001.tb05826.x
  • Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28(20):5189–5194. doi:10.1523/JNEUROSCI.3338-07.2008
  • Cao H, Zhang YQ. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32(5):972–983. doi:10.1016/j.neubiorev.2008.03.009
  • Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006;51(2):240–264. doi:10.1016/j.brainresrev.2005.11.004
  • Reeve AJ, Patel S, Fox A, Walker K, Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain. 2000;4(3):247–257. doi:10.1053/eujp.2000.0177
  • Ma D, Wang X, Liu X, et al. Macrophage infiltration initiates RIP3/MLKL-dependent necroptosis in paclitaxel-induced neuropathic pain. Mediators Inflamm. 2022;2022:1567210. doi:10.1155/2022/1567210
  • Rakhshandeh H, Pourbagher-Shahri AM, Hasanpour M, Iranshahi M, Forouzanfar F. Effects of Capparis Spinosa extract on the neuropathic pain induced by chronic constriction injury in rats. Metab Brain Dis. 2022;37(8):2839–2852. doi:10.1007/s11011-022-01094-2
  • Ishikawa T, Miyagi M, Kamoda H, et al. Differences between tumor necrosis factor-α receptors types 1 and 2 in the modulation of spinal glial cell activation and mechanical allodynia in a rat sciatic nerve injury model. Spine. 2013;38(1):11–16. doi:10.1097/BRS.0b013e3182610fa9
  • Haack M, Sanchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007;30(9):1145–1152. doi:10.1093/sleep/30.9.1145
  • Hirotsu C, Pedroni MN, Berro LF, Tufik S, Andersen ML. Nicotine and sleep deprivation: impact on pain sensitivity and immune modulation in rats. Sci Rep. 2018;8(1):13837. doi:10.1038/s41598-018-32276-7
  • Dai Y, Liu S, Chen J, Liu L, Zhou C, Zuo Y. Microglial responses and pain behaviors are exacerbated by chronic sleep deprivation in rats with chronic pain via neuroinflammatory pathways. Neuroscience. 2022;503:83–94. doi:10.1016/j.neuroscience.2022.09.004
  • Soya S, Sakurai T. Evolution of Orexin Neuropeptide system: structure and function. Front Neurosci. 2020;14:691. doi:10.3389/fnins.2020.00691
  • Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol. 2013;4:18. doi:10.3389/fendo.2013.00018
  • Xiang X, Chen Y, Li KX, et al. Neuroanatomical basis for the orexinergic modulation of anesthesia arousal and pain control. Front Cell Neurosci. 2022;16:891631. doi:10.3389/fncel.2022.891631
  • McAlpine CS, Kiss MG, Rattik S, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566(7744):383–387. doi:10.1038/s41586-019-0948-2
  • Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev. 2022;43(4):743–760. doi:10.1210/endrev/bnab042
  • Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–451. doi:10.1016/S0092-8674(00)81973-X
  • Beuckmann CT, Sinton CM, Williams SC, et al. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J Neurosci. 2004;24(18):4469–4477. doi:10.1523/JNEUROSCI.5560-03.2004
  • Sutcliffe JG, de Lecea L. The hypocretins: excitatory neuromodulatory peptides for multiple homeostatic systems, including sleep and feeding. J Neurosci Res. 2000;62(2):161–168. doi:10.1002/1097-4547(20001015)62:2<161::AID-JNR1>3.0.CO;2-1
  • Xu A, Sakurai E, Kuramasu A, et al. Roles of hypothalamic subgroup histamine and orexin neurons on behavioral responses to sleep deprivation induced by the treadmill method in adolescent rats. J Pharmacol Sci. 2010;114(4):444–453. doi:10.1254/jphs.10177FP
  • Alakuijala A, Sarkanen T, Partinen M. Hypocretin-1 levels associate with fragmented sleep in patients with narcolepsy type 1. Sleep. 2016;39(5):1047–1050. doi:10.5665/sleep.5750
  • Murphy P, Moline M, Mayleben D, et al. Lemborexant, A Dual Orexin Receptor Antagonist (DORA) for the treatment of insomnia disorder: results from a Bayesian, Adaptive, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Sleep Med. 2017;13(11):1289–1299. doi:10.5664/jcsm.6800
  • Hoever P, Dorffner G, Beneš H, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–985. doi:10.1038/clpt.2011.370
  • Roth T, Black J, Cluydts R, et al. Dual orexin receptor antagonist, almorexant, in elderly patients with primary insomnia: a Randomized, Controlled Study. Sleep. 2017;40(2). doi:10.1093/sleep/zsw034
  • Black J, Pillar G, Hedner J, et al. Efficacy and safety of almorexant in adult chronic insomnia: a randomized placebo-controlled trial with an active reference. Sleep Med. 2017;36:86–94. doi:10.1016/j.sleep.2017.05.009
  • Robinson CL, Supra R, Downs E, et al. Daridorexant for the treatment of insomnia. Health Psychol Res. 2022;10(3):37400. doi:10.52965/001c.37400
  • Ghalebandi S, Zareie F, Askari K, Yuzugulen J, Haghparast A. Intra-CA1 injection of orexin receptors antagonism attenuates the stress-induced analgesia in a rat acute pain model. Behav Brain Res. 2022;423:113785. doi:10.1016/j.bbr.2022.113785
  • Shakerinava P, Sayarnezhad A, Karimi-Haghighi S, Mesgar S, Haghparast A. Antagonism of the orexin receptors in the ventral tegmental area diminished the stress-induced analgesia in persistent inflammatory pain. Neuropeptides. 2022;96:102291. doi:10.1016/j.npep.2022.102291
  • Mobarakeh JI, Takahashi K, Sakurada S, et al. Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and −2) in mice. Peptides. 2005;26(5):767–777. doi:10.1016/j.peptides.2005.01.001
  • den Boon FS, Sarabdjitsingh RA. Circadian and ultradian patterns of HPA-axis activity in rodents: significance for brain functionality. Best Pract Res Clin Endocrinol Metab. 2017;31(5):445–457. doi:10.1016/j.beem.2017.09.001
  • Spiga F, Walker JJ, Terry JR, Lightman SL. HPA axis-rhythms. Compr Physiol. 2014;4(3):1273–1298.
  • Balbo M, Leproult R, Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234. doi:10.1155/2010/759234
  • Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus. 2020;10(3):20190092. doi:10.1098/rsfs.2019.0092
  • Sgoifo A, Buwalda B, Roos M, Costoli T, Merati G, Meerlo P. Effects of sleep deprivation on cardiac autonomic and pituitary-adrenocortical stress reactivity in rats. Psychoneuroendocrinology. 2006;31(2):197–208. doi:10.1016/j.psyneuen.2005.06.009
  • Russell AL, Miller L, Yi H, Keil R, Handa RJ, Wu TJ. Knockout of the circadian gene, Per2, disrupts corticosterone secretion and results in depressive-like behaviors and deficits in startle responses. BMC Neurosci. 2021;22(1):5. doi:10.1186/s12868-020-00607-y
  • Galbo H, Kall L. Circadian variations in clinical symptoms and concentrations of inflammatory cytokines, melatonin, and cortisol in polymyalgia rheumatica before and during prednisolone treatment: a controlled, observational, clinical experimental study. Arthritis Res Ther. 2016;18(1):174. doi:10.1186/s13075-016-1072-4
  • Rosenberg H, Halman S, Yadav K. Polymyalgia rheumatica. CMAJ. 2021;193(46):E1770. doi:10.1503/cmaj.210541
  • Kreiner F, Langberg H, Galbo H. Increased muscle interstitial levels of inflammatory cytokines in polymyalgia rheumatica. Arthritis Rheum. 2010;62(12):3768–3775. doi:10.1002/art.27728
  • Wang S, Lim G, Zeng Q, et al. Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J Neurosci. 2004;24(39):8595–8605. doi:10.1523/JNEUROSCI.3058-04.2004
  • Le Coz GM, Anton F, Hanesch U. Glucocorticoid-mediated enhancement of glutamatergic transmission may outweigh anti-inflammatory effects under conditions of neuropathic pain. PLoS One. 2014;9(3):e91393. doi:10.1371/journal.pone.0091393
  • Chiu GS, Freund GG. Modulation of neuroimmunity by adenosine and its receptors: metabolism to mental illness. Metabolism. 2014;63(12):1491–1498. doi:10.1016/j.metabol.2014.09.003
  • Gvilia I, Suntsova N, Kostin A, et al. The role of adenosine in the maturation of sleep homeostasis in rats. J Neurophysiol. 2017;117(1):327–335. doi:10.1152/jn.00675.2016
  • Basheer R, Bauer A, Elmenhorst D, Ramesh V, McCarley RW. Sleep deprivation upregulates A1 adenosine receptors in the rat basal forebrain. Neuroreport. 2007;18(18):1895–1899. doi:10.1097/WNR.0b013e3282f262f6
  • Blanco-Centurion C, Xu M, Murillo-Rodriguez E, et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci. 2006;26(31):8092–8100. doi:10.1523/JNEUROSCI.2181-06.2006
  • Hao JW, Qiao WL, Li Q, et al. A1 adenosine receptor activation inhibits P2X3 receptor-mediated ATP currents in rat dorsal root ganglion neurons. Mol Neurobiol. 2022;59(11):7025–7035. doi:10.1007/s12035-022-03019-7
  • Martins DF, Mazzardo-Martins L, Cidral-Filho FJ, Stramosk J, Santos AR. Ankle joint mobilization affects postoperative pain through peripheral and central adenosine A1 receptors. Phys Ther. 2013;93(3):401–412. doi:10.2522/ptj.20120226
  • Yamaoka G, Horiuchi H, Morino T, Miura H, Ogata T. Different analgesic effects of adenosine between postoperative and neuropathic pain. J Orthop Sci. 2013;18(1):130–136. doi:10.1007/s00776-012-0302-0
  • Hambrecht-Wiedbusch VS, Gabel M, Liu LJ, Imperial JP, Colmenero AV, Vanini G. Preemptive caffeine administration blocks the increase in postoperative pain caused by previous sleep loss in the rat: a potential role for preoptic adenosine A2A receptors in sleep-pain interactions. Sleep. 2017;40(9). doi:10.1093/sleep/zsx116