211
Views
1
CrossRef citations to date
0
Altmetric
Review

Entomopathogenic organisms: conceptual advances and real-world applications for mosquito biological control

, , , , , , , , & show all
Pages 25-31 | Published online: 20 Apr 2016

References

  • Scholte EJ, Knols BGJ, Samson R, Takken W. Entomopathogenic fungi for mosquito control: a review. J Insect Sci. 2004;4:19.
  • Shah PA, Pell JK. Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol. 2003;61:413–423.
  • Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol. 2006;51:331–357.
  • Zimmermann G. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pest Sci. 1993;37:375–379.
  • Charnley AK. Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res. 2003;40:241–321.
  • Thomas MB, Read AF. Can fungal biopesticides control malaria? Nat Rev Microbiol. 2007;5:377–383.
  • World Health Organization: Dengue and severe dengue. Fact Sheet No. 117 [updated May 2015]. Available from: http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed June 15, 2015.
  • Montella IR, Martins AJ, Viana-Medeiros PF, Lima JB, Braga IA, Valle D. Insecticide resistance mechanisms of Brazilian Aedes aegypti populations from 2001 to 2004. Am J Trop Med Hyg. 2007;77:467–477.
  • da-Cunha MP, Lima JB, Brogdon WG, Moya GE, Valle D. Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz. 2005;100:441–444.
  • Shaalan EAS, Canyon D, Younes MWF, Abdel-Wahab H, Mansour AH. A review of botanical phytochemicals with mosquitocidal potential. Environ Int. 2005;31:1149–1166.
  • Schmutterer H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol. 1990;35:197–271.
  • Zebitz CPW. Effect of some crude and azadirachtin-enriched neem (Azadirachta indica) seed kernel extracts on larvae of Aedes aegypti. Entomol Exp Appl. 1984;35:1–16.
  • Gomes SA, Paula AR, Ribeiro A, et al. Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Parasit Vectors. 2015;8:669. doi: 10.1186/s13071-015-1280-9.
  • Monzon RB, Alvior JP, Luczon LLC, Morales AS, Mutuc FES. Larvicidal potential of five Philippine plants against Aedes aegypti (Linneaeus) and Culex quinquefasciatus (Say). Southeast Asian J Trop Med Public Health. 1994;25:755–759.
  • Dua VK, Pandey AC, Raghavendra K, Gupta A, Sharma T, Dash AP. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malar J. 2009;8:124.
  • Mckenzie CL, Byford RL. Continuous, alternating, and mixed insecticides affect development of resistance in the horn fly (Diptera: Muscidae). J Econ Entomol. 1993;86:1040–1048.
  • Sparks RE. Microencapsulation. In: Kirk-Othmer. Encyclopedia of Chemical Technology. 3rd ed. New York: John Willey and Sons; v. 15;1981:470p. I.
  • Ré MI. Microencapsulation by spray drying. Drying Technol. 1998;16:1195–1236.
  • Park JK, Chang HN. Microencapsulation of microbial cells. Biotechnol Adv. 2000;18:303–319.
  • Risch SJ. Encapsulation: overview of uses and techniques. In: Risch SJ, Reineccius GA, editors. Encapsulation and Controlled Release of Food Ingredients. Washington, DC: ACS; 1995:2–7.
  • Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules. 1998;31(23):8382–8395.
  • Soliman E. Microencapsulation of essential oils within alginate: formulation and in vitro evaluation of antifungal activity. J Encapsul Adsorp Sci. 2013;3(1):48–55.
  • Ceausoglu I, Hunkeler D. A new microencapsulation device for controlled membrane and capsule size distributions. J Microencapsul. 2002;19:725–735.
  • Liu CP, Liu SD. Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126. J Microencapsul. 2009;26(5):377–384.
  • Sezer AD, Akbuga J. Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads. J Microencapsul. 1999;16:687–696.
  • Pereira RM, Roberts DW. Alginate and cornstarch mycelial formulations of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. J Econ Entomol. 1991;84:1657–1661.
  • Paula HCB, Oliveira EF, Abreu FOMS, Paula RCM, Morais SM, Forte MMC. Esferas (beads) de alginato como agente encapsulante de óleo de Croton zehntneri Pax et Hoffm [Alginate beads for encapsulation of Croton zehntneri oil]. Polímeros. 2010;20:112–120. Portuguese.
  • WHO. Malaria: Vector control and insecticide resistance. Available from: http://www.who.int/malaria/areas/vector_control/en/. Accessed January 1, 2016.
  • Ranson H, Burhani J, Lumjuan N, Black WC. Insecticide resistance in dengue vectors. TropIKA net J. 2010;1:1.
  • Blanford S, Shi W, Christian R, et al. Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. PLoS One. 2011;6(8):e23591.
  • Howard AFV, N’Guessan R, Koenraadt CJM, et al. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions. Malar J. 2011;10:24–32.
  • Farenhorst M, Mouatcho JC, Kikankie CK, et al. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA. 2009;106(41):17443–17447.
  • Paula AR, Carolino AT, Paula CO, Samuels RI. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasit Vectors. 2011;4:8–15.
  • Scholte EJ, Ng’habi K, Kihonda J, et al. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science. 2005;308:1641–1642.
  • Farenhorst M, Farina D, Scholte EJ, et al. African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg. 2008;78(6):910–916.
  • Farenhorst M, Hilhorst A, Thoma MB, Knols BGJ. Development of fungal applications on netting substrates for malaria vector control. J Med Entomol. 2011;48(2):305–313.
  • Hecht O, Hernandez-Corzo J. On the visual orientation of mosquitoes in their search of resting places. Entomol Exp Appl. 1963;6:63–74.
  • Carolino AT, Paula AR, Silva CP, Butt TM, Samuels RI. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae). Parasit Vectors. 2014;7:198–204.
  • Paula AR, Brito ES, Pereira CR, Carrera MP, Samuels RI. Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control. Biocont Sci Tech. 2008;18:1017–1025.
  • Paula AR, Carolino AT, Silva CP, Pereira CR, Samuels RI. Testing fungus impregnated cloths for the control of adult Aedes aegypti under natural conditions. Parasit Vectors. 2013;6:256–261.
  • Mnyone LL, Kirby MJ, Lwetoijera DW, et al. Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence. Malar J. 2010;9:246–252.
  • Mnyone LL, Lyimo IN, Lwetoijera DW, et al. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents. Malar J. 2012;11:87–97.
  • Lwetoijera DW, Sumaye RD, Madumla EP, et al. An extra-domiciliary method of delivering entomopathogenic fungus, Metarhizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis. Parasit Vectors. 2010;3:18–23.
  • Butt TM, Jackson C, Magan N, editors. Fungi as Biocontrol Agents: Progress Problems and Potential. UK: CABI Publishing; 2001:1–8.
  • Darbro JM, Johnson PH, Thomas MB, Ritchie SA, Kay BH, Ryan PA. Effects of Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes aegypti in laboratory and semi-field conditions. Am J Trop Med Hyg. 2012;86:656–664.
  • Santos A, Oliveira BL, Samuels RI. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid. Mycopathologia. 2007;163:233–240.
  • Sim S, Dimopoulos G. Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One. 2010;5:e10678.
  • Boucias DG, Stokes C, Storey G, Pendland JC. The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachrichten Bayer. 1996;49:103–144.
  • Quintela ED, McCoy CW. Conidial attachment of Metarhizium anisopliae and Beauveria bassiana to the larval cuticle of Diaprepes abbreviatus (Coleoptera: Curculionidae) treated with imidacloprid. J Invertebr Pathol. 1998;72:220–230.
  • Pridgeon JW, Pereira RM, Becnel JJ, Allan SA, Clark GG, Linthicum KJ. Susceptibility of Aedes aegypti, Culex quinquefasciatus say, and Anopheles quadrimaculatus say to 19 pesticides with different modes of action. J Med Entomol. 2008;45:82–87.
  • Paul A, Harrington LC, Scott JG. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2006;43:55–60.