244
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent insights into sublethal effects of pesticides on insect respiratory physiology

&
Pages 31-39 | Published online: 18 Nov 2015

References

  • Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, Van der Sluijs JP. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res Int. 2015;22(1):119–134.
  • Desneux N, Decourtye A, Delpuech J-M. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007;52:81–106.
  • Belzunces LP, Tchamitchian S, Brunet J-L. Neural effects of insecticides in the honey bee. Apidologie. 2012;43:348–370.
  • Kestler P. Cyclic CO2 release as a physiological stress indicator in insects. Comp Biochem Physiol C. 1991;100:207–211.
  • Sláma K, Miller TA. Insecticide poisoning: disruption of a possible autonomic function in pupae of Tenebrio molitor. Pestic Biochem Phys. 1987;29:25–34.
  • Watanabe ME. Colony collapse disorder: many suspects, no smoking gun. BioScience. 2008;58:384–388.
  • Lighton JRB. Discontinuous gas exchange in insects. Annu Rev Entomol. 1996;41:309–324.
  • Gibbs AG, Johnson RA. The role of discontinuous gas exchange in insects: the chtonic hypothesis does not hold water. J Exp Biol. 2004;207:3477–3482.
  • Hetz SK, Bradley TJ. Insects breathe discontinuously to avoid oxygen toxicity. Nature. 2005;433:516–519.
  • Chown SL, Gibbs AG, Hetz SK, Klok CJ, Lighton JRB, Marais E. Discontinuous gas exchange in insects: a clarification of hypotheses and approaches. Physiol Biochem Zool. 2006;79:333–343.
  • Buck J, Keister M. Cyclic CO2 release in diapausing Agapema pupae. Biol Bull. 1955;109:144–163.
  • Buck J. Cyclic CO2 release in insects. IV. A theory of mechanism. Biol Bull. 1958;114:118–140.
  • Hadley NF. Water Relations of Terrestrial Arthropods. London, UK: Academic Press; 1994.
  • Kuusik A, Harak M, Hiiesaar K, Metspalu L, Luik A, Tartes U. Calorimetric investigations on physiological stress in Tenebrio molitor (Coleoptera, Tenebrionidae) pupae. Thermochim Acta. 1998;309:57–61.
  • Metspalu L, Kuusik A, Hiiesaar K, Tartes U. Tonic immobility in adult Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) evoked by mechanical and optical stimuli. Eur J Entomol. 2002;99:215–219.
  • Karise R, Kuusik A, Mänd M, et al. Gas exchange patterns of bumble bee foragers before and after exposing to lowered temperature. J Insect Physiol. 2010;56(5):529–535.
  • Jõgar K, Kuusik A, Metspalu L, et al. The length of discontinuous gas exchange cycles in lepidopteran pupae may serve as a mechanism for natural selection. Physiol Entomol. 2014;39(4):322–330.
  • Contreras HL, Bradley TJ. Metabolic rate controls respiratory pattern in insects. J Exp Biol. 2009:212(3):424–428.
  • Contreras HL, Bradley TJ. Transitions in insect respiratory patterns are controlled by changes in metabolic rate. J Insect Physiol. 2010;56(5):522–528.
  • Basson CH, Terblanche JS. Respiratory pattern transitions in three species of Glossina (Diptera, Glossinidae). J Insect Physiol. 2011;57:433–443.
  • Chown SL, Sørensen JG, Terblanche JS. Water loss in insects: an environmental change perspective. J Insect Physiol. 2011;57:1070–1084.
  • Withers PC, Cooper CE, Nespolo RF. Evaporative water loss, relative water economy and evaporative partitioning of a hetethermic marsupial, the monito del monte (Dromicops gliroides). J Exp Biol. 2012;215:2806–2813.
  • Tomlinson S, Phillips RD. Metabolic rate, evaporative water loss and field activity in response to temperature in an ichneumonid wasp. J Zool. 2012;287:81–90.
  • Terblanche JS, Clusella-Trullas S, Chown SL. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic variation. J Exp Biol. 2010;213:2940–2949.
  • Kambule N. Metabolic rate in diapause and nondiapause brown locust eggs correlated with embryonic development. Physiol Entomol. 2011;36:299–308.
  • Kambule IN, Hanrahan SA, Duncan FD. Metabolic rate in diapause and nondiapause brown locust eggs correlated with embryonic development. Physiol Entomol. 2011;36(4):299–308.
  • Lehmann P, Piiroinen S, Lyytinen A, Lindström L. Responses in metabolic rate to changes in temperature in diapausing Colorado potato beetle Leptinotarsa decemlineata from three European popualtions. Physiol Entomol. 2015;49:123–130.
  • Jagers op Akkerhuis GAJM, Westerhof R, Straalen NM van, Koeman JH. Water balance, respiration and immobilisation in relation to deltamethrin poisoning and physical conditions in the epigeal spider Oedothorax apicatus. Pestic Sci. 1995;44:123–130.
  • Jagers op Akkerhuis GAJM, Seidelin N, Kjaer C. Are we analysing knockdown in the right way? How independence of the knockdown-recovery process from mortality may affect measures for behavioural effects in pesticide bioassays. Pestic Sci. 1999;55:62–68.
  • Krams I, Kivleniece I, Kuusik A, et al. Predation selects for low resting metabolic rate and consistent individual differences in anti-predator behavior in a beetle. Acta Ethol. 2013;16(3):163–172.
  • Krams I, Kivleniece I, Kuusik A, et al. High repeatability of anti-predator responses and resting metabolic rate in a beetle. J Insect Behav. 2014;27(1):57–66.
  • Buck JB, Keister M, Specht H. Discontinuous respiration in diapausing Agapema pupae. Anat Rec. 1953;117:541.
  • Quinlan MC, Hadley NF. Gas exchange, ventilatory patterns, and water loss in two lubber grasshoppers: quantifying cuticular and respiratory transpiration. Physiol Zool. 1993;66:628–642.
  • Quinlan MC, Lighton JRB. Respiratory physiology and water relations of three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Physiol Entomol. 1999;24:293–302.
  • Kestler P.. Respiration and respiratory water loss. In: Hoffmann KH, editor. Environmental Physiology and Biochemistry of Insects. Berlin, Heidelberg: Springer Verlag; 1985:137–189.
  • Harak M, Lamprecht I, Kuusik A, Hiiesaar K, Metspalu L, Tartes U. Calorimetric investigation of insect metabolism and development under the influence of a toxic plant extract. Thermochim Acta. 1999;333:39–48.
  • Jõgar K, Kuusik A, Ploomi A, et al. Oxygen convective uptakes in gas exchange cycles in early diapause pupae of Pieris brassicae L. (Lepidoptera, Pieridae). J Exp Biol. 2011;214:2816–2822.
  • Chown SL. Discontinuous gas exchange: new perspectives on evolutionary origins and ecological explanations. Funct Ecol. 2011;25:1163–1168.
  • Williams CM, Pelini SL, Hellmann JJ, Sinclair BJ. Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biol Lett. 2010;6:274–277.
  • Schimpf NG, Matthews PGD, Wilson RS, White CR. Cockroaches breathe discontinuously to reduce respiratory water loss. J Exp Biol. 2009;212:2773–2780.
  • Schimpf NG, Matthews PGD, White CR. Cockroaches that exchange respiratory gases discontinuously survive food and water restriction. Evolution. 2012;66(2):597–604.
  • Matthews PGD, White CR. Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae). Physiol Biochem Zool. 2012;85(2):174–182.
  • Jõgar K, Kuusik A, Metspalu L, et al. The relations between the patterns of gas exchange and water loss in diapausing pupae of large white butterfly Pieris brassicae (Lepidoptera: Pieridae). Eur J Entomol. 2004;101(3):467–472.
  • Lighton JRB, Schilman PE, Holway DA. The hyperoxic switch: assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange. J Exp Biol. 2004;207:4463–4471.
  • Groenewald B, Baxelet CS, Potter CP, Terblanche JS. Gas exchange patterns and water loss rates in the Table Mountain cockroaoch, Aptera fusca (Blattodea: Blaberidae). J Exp Biol. 2013;216:3844–3853.
  • Chown SL. Davis ALV. Discontinuous gas exchange and the significance of respiratory water loss in scarabaeine beetles. J Exp Biol. 2003;206:3547–3556.
  • Muljar R, Karise R, Viik E, et al. Effects of Fastac 50 EC on bumble bee Bombus terrestris L. respiration: DGE disappearance does not lead to increasing water loss. J Insect Physiol. 2012;58(11):1469–1476.
  • Karise R, Muljar R, Smagghe G, et al. Sublethal effects of kaolin and the biopesticides Prestop-Mix and BotaniGard on metabolic rate, water loss and longevity in bumble bees (Bombus terrestris). J Pest Sci. Epub 2015 Feb 2. doi 10.1007/s10340-015-0649-z.
  • Fielden LJ, Krasnov B, Khokhlova I. Respiratory gas exchange in the flea Xenopsylla conformis (Siphonaptera: Pulicidae). J Medical Entomol. 2001;38(5):735–739.
  • Mänd M, Kuusik A, Martin AJ, et al. Discontinuous gas exchange cycles and active ventilation in pupae of the bumblebee Bombus terrestris. Apidologie. 2005;36(4):561–570.
  • Mänd M, Kuusik A, Martin AJ, et al. Regular periods of abdominal contractions recorded in the larva of the bumblebee, Bombus terrestris L. (Hymenoptera: Apidae). Eur J Entomol. 2006;103(2):319–322.
  • Boardman L, Terblanche JS. Oxygen safety margins set thermal limits in an insect model system. J Exp Biol. 2015;218:1677–1685.
  • Bell RA. Respiratory activity during embryonic development in a diapausing and a selected non-diapausing strain of the gypsy moth, Lymantria dispar L. Comp Biochem Physiol A. 1989;93(4):767–771.
  • Terblanche JS, de Jager Z, Boardman L. Addison P. Physiological traits suggest limited diapause response in false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae). J Appl Entomol. 2014;138(9):683–691.
  • Nestel D, Nemny-Lavy E, Alchanatis V. Gas-exchange patterns of Mediterranean fruit fly pupae (Diptera: Tephritidae): a tool to forecast developmental stage. Fla Entomol. 2007;90(1):71–79.
  • Alleyne M, Chappell MA, Gelman DB, et al. Effects of parasitism by the braconid wasp Cotesia congregata on metabolic rate in host larvae of the tobacco hornworm, Manduca sexta. J Insect Physiol. 1997;43(2):143–154.
  • Beekman M, van Stratum P. Respiration in bumblebee queens: effect of life phase on the discontinuous ventilation cycle. Entomol Exp Appl. 1999;92:295–298.
  • Silvola J. Respiration and enervetics of the bumblebee Bombus terrestris. Holarctic Ecol. 1984;7:177–181.
  • Boratynski Z, Koskela E, Mappes T, Oksanen TA. Sex-specific selection on energy metabolism – selection coefficients for winter survival. J Evolution Biol. 2010;23:1969–1978.
  • Harak M, Kuusik, A, Hiiesaar K, Metspalu L, Luik A, Tartes U. Calorimetric investigations on physiological stress in Tenebrio molitor (Coleoptera, Tenebrionidae) pupae. Thermochim Acta. 1998;309:57–61.
  • Artacho P, Nespolo RF. Natural selection reduces energy metabolism in the garden snail, Helix aspersa (Cornu aspersum). Evolution. 2009;63:1044–1050.
  • Boratynski Z, Koteja P. The association between body mass, metabolic rates and survival of bank voles. Funct Ecol. 2009;23:330–339.
  • Lighton JRB, Lovegrove BGL. A temperature-induced switch from diffusive to convective ventilation in the honeybee. J Exp Biol. 1990;154:509–516.
  • Lachenicht MW, Clusella-Trullas S, Boardman L, et al. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J Insect Physiol. 2010;56(7):822–830.
  • Must A, Merivee E, Luik A, Williams I, Ploomi A, Heidemaa M. Spike bursts generated by the thermosensitive (cold) neuron from the antennal campaniform sensilla of the ground beetle Platynus assimilis. J Insect Physiol. 2010;56(4):412–421.
  • Hoch G, Toffolo EP, Netherer S, et al. Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agr Forest Entomol. 2009;11(3):313–320.
  • Stabentheiner A, Kovac, H, Brodschneider R. Honeybee colony thermoregulation – regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One. 2010;5(1):e8967.
  • Chown SL. Respiratory water loss in insects. Comp Biochem Physiol A. 2002;133:791–804.
  • Denlinger DL, Yocum GD. Physiology of heat sensitivity. In: Hallman GJ, Denlinger DL, editors. Temperature Sensitivity in Insects and Application in Integrated Pest Management. USA: Westview Press; 1998:7–57.
  • Chown SL, Nicolson SW. Insect Physiological Ecology: Mechanisms and Patterns. Oxford: Oxford University Press; 2004.
  • Jindra M, Sehnal F. Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem. 1990;20(4):389–395.
  • Karise R. Foraging Behaviour and Physiology of Bees: Impact of Insecticides. Tartu, Estonia: Triip; 2007.
  • Hatjina F, Papaefthimiou C, Charistos L, et al. Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie. 2013;44(4):467–480.
  • Kuusik A, Metspalu L, Hiiesaar K, Kogerman A, Tartes U. Changes in muscular and respiratory activity patterns in yellow mealworm (Tenebrio molitor) and greater wax moth (Galleria mellonella) pupae caused by some plant extracts, juvenile hormone analogues and pyrethroid. Proc Estonian Acad Sci Biol. 1993;42(2):94–107.
  • Zafeiridou G, Theophilidis G. A simple method for monitoring the respiratory rhythm in intact insects and assessing the neurotoxicity of insecticides. Pestic Biochem Phys. 2006;86:211–217.
  • Woodman J, Haritos VS, Cooper P. Effects of phosphine on the nervous regulation of gas exchange in Periplaneta americana. Comp Biochem Physiol C. 2008;147:271–277.
  • Kivimägi I, Kuusik A, Ploomi A, et al. Gas exchange patterns in Platynus assimilis (Coleoptera, Carabidae): respiratory failure induced by a pyrethroid. Eur J Entomol. 2013;110:47–54.
  • Zheng, H, Li AY, Fielden LJ, et al. Effects of permethrin and amitraz on gas exchange and water loss in unfed adult females of Amblyomma americanum (Acari: Ixodidae). Pestic Biochem Phys. 2013;107(2):153–159.
  • Sibul I, Kuusik A, Voolma K. Monitoring of gas exchange cycles and ventilatory movements in the pine weevil Hylobius abietis: respiratory failures evoked by a botanical insecticide. Entomol Exp Appl. 2004;110(2):173–179.
  • Jõgar K, Kuusik A, Metspalu L, Hiiesaar K, Grishakova M, Luik A. Effects of Neem EC on gas exchange, tracheal ventilation, and water loss in diapausing pupae of Pieris brassicae. Entomol Exp Appl. 2008;2:165–173.
  • Kuusik A, Harak M, Hiiesaar K, Metspalu L, Tartes U. Studies on insect growth regulating (IGR) and toxic effects of Ledum palustre extracts on Tenebrio molitor pupae (Coleoptera, Tenebrionidea) using calorimetric recordings. Thermochim Acta. 1995;251:247–253.
  • Dingha BN, Moar WJ, Appel AG. Effects of Bacillus thuringiensis Cry1C toxin on the metabolic rate of Cry1C resistant and susceptible Spodoptera exigua (Lepidoptera: Noctuidae). Physiol Entomol. 2004;29:409–418.
  • Dingha, BN, Appel, AG, Moar WJ. Discontinuous gas exchange patterns of beet armyworm pupae, Spodoptera exigua (Lepidotera: Noctuidae): effects of Bacillus thuringiensis Cry1C toxin, pupal age and temperature. Physiol Entomol. 2005;30:388–397.