144
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Superoxide dismutase activities in the midgut of Helicoverpa armigera larvae: identification and biochemical properties of a manganese superoxide dismutase

, , &
Pages 13-20 | Published online: 04 Aug 2015

References

  • Felton GW, Summers CB. Antioxidant systems in insects. Arch Insect Biochem Physiol. 1995;29:187–197.
  • Aucoin RR, Philogene BJR, Arnason JT. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch Insect Biochem Physiol. 1991;16:139–152.
  • Wang Y, Oberley LW, Murhammer DW. Antioxidant defense systems of two Lepidopteran insect cell lines. Free Radic Biol Med. 2001;30:1254–1262.
  • Weirich GF, Collins AM, Williams VP. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie. 2002;33:3–14.
  • Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol C. 2008;148:1–5.
  • Gujar GT, Kumar A, Kalia V, Chandrashekhar K. Spatial and temporal variation in susceptibility of American bollworm, Helicoverpa armigera (Hubner) to Bacillus thuringiensis var. Karstakin in India. Curr Sci. 2000;78:995–1001.
  • Rajapakse CNK, Walter GH. Polyphagy and primary host plants: oviposition preference versus larval performance in the lepidopteran pest Helicoverpa armigera. Arthropod Plant Interact. 2007;1:17–26.
  • Adamski Z, Ziemnicki K, Fila K, Zikic RV, Stajn A. Effects of long-term exposure to fenitrothion on Spodoptera exigua and Tenebrio molitor larval development and antioxidant enzyme activity. Biol Lett. 2003;40:43–52.
  • Bagchi D, Bagchi M, Hassoun EA, Stohs SJ. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology. 1995;104:129–140.
  • Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357:65–72.
  • Kannan K, Jain SK. Oxygen radical generation and endosulfan toxicity in Jurkat T-cells. Mol Cell Biochem. 2003;247:1–7.
  • Pritsos CA, Ahmad S, Elliott AJ, Pardini RS. Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth, Spodoptera eridania. Free Radic Res Commun. 1990;9:127–133.
  • Ahmad S, Pardini RS. Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radic Biol Med. 1990;8:401–413.
  • Krishnan N, Kodrik D. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol. 2006;52:11–20.
  • Datkhile KD, Mukhopadhyaya R, Dongre TK, Nath BB. Increased level of superoxide dismutase (SOD) activity in larvae of Chironomus ramosus (Diptera: Chironomidae) subjected to ionizing radiation. Comp Biochem Physiol C. 2009;149:500–506.
  • Yamamoto K, Zhang P, He N, et al. Molecular and biochemical characterization of manganese-containing superoxide dismutase from the silkworm, Bombyx mori. Comp Biochem Physiol B. 2005;142:403–409.
  • Choi YS, Lee KS, Yoon HJ, Kim I, Sohn HD, Jin BR. Bombus ignitus Cu, Zn superoxide dismutase (SOD1): cDNA cloning, gene structure, and up-regulation in response to paraquat, temperature stress, or lipopolysaccharide stimulation. Comp Biochem Physiol B. 2006;144:365–371.
  • Wang Y, Wang L, Zhu Z, Mab W, Lei C. The molecular characterization of antioxidant enzyme genes in Helicoverpa armigera adults and their involvement in response to ultraviolet-A stress. J Insect Physiol. 2012;58:1250–1258.
  • Nardini L, Christian RN, Coetzer N, Koekemoer LL. DDT and pyrethroid resistance in Anopheles arabiensis from South Africa. Parasit Vectors. 2013;6:229.
  • Mamidala P, Wijeratne AJ, Wijeratne S, et al. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMC Genomics. 2012;13:6.
  • Nagarkatti S, Prakash A. Rearing Helicoverpa armigera (Hubner) on an artificial diet, Volume 17; 1974. In: Technical Bulletin, Commonwealth Institute of Biological Control, Bangalore.
  • Lomate PR, Jadhav BR, Giri AP, Hivrale VK. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase. PLoS One. 2013;8(9):e74889.
  • Pauchet A, Muck A, Svatos A, Heckel DG, Prelss S. Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect. J Proteome Res. 2007;7:1629–1639.
  • Lomate PR, Hivrale VK. Effect of Bacillus thuringiensis (Bt) Cry1Ac toxin and protease inhibitor on growth and development of Helicoverpa armigera (Hübner). Pest Biochem Physiol. 2013;105:77–83.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:453–464.
  • Davis BJ. Disc electrophoresis II: methods and application to human serum. Ann N Y Acad Sci. 1964;12:404–427.
  • Chen C, Pan S. Assay of superoxide dismutase activity by combining electrophoresis and densitometry. Bot Bull Acad Sin. 1996;37:107–111.
  • Imanari T, Hirota M, Miyazaki M, Hayakawa K, Tamura Z. Improved assay method for superoxide dismutase. Igaku no ayumi. 1997;101:496–497.
  • Hodgson EK, Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975;14:5294–5299.
  • Bannister JV, Bannister WH, Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22:111–180.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.
  • Dawkar VV, Chikte YR, Lomate PR, Dholakia BB, Gupta VS, Giri AP. Molecular insights in to defense mechanisms of Lepidopteron insect pests against toxicants. J Proteome Res. 2013;12:4727–4737.
  • de la Paz Celorio-Mancera M, Wheat CW, Vogel H, Söderlind L, Janz N, Nylin S. Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq. Mol Ecol. 2013;22:4884–4895.
  • Fridovich I. Superoxide dismutase. Adv Enzymol. 1986;58:61–97.
  • Lee YM, Ayala FJ, Misra HP. Purification and properties of superoxide dismutase from Drosophila melanogaster. J Biol Chem. 1981;256:8506–8509.
  • Asada K, Kanematsu S, Okada S, Hayakawa T. Phylogenetic distribution of three types of superoxide dismutase in organisms and in cell organelles. In: Bannister JV, Hill HAO, editors. Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase. Vol IIA. New York: Elsevier; 1980:136.
  • Duttaroy A, Meidinger R, Kirby K, Carmichael S, Hilliker A, Phillips J. A manganese superoxide dismutase-encoding cDNA from Drosophila melanogaster. Gene. 1994;143:223–225.
  • Gao XL, Li JM, Wang YL, et al. Cloning, expression and characterization of mitochondrial manganese superoxide dismutase from the whitefly, Bemisia tabaci. Int J Mol Sci. 2013;14:871–887.
  • Li JM, Su YL, Gao XL, He J, Liu SS, Wang XW. Molecular characterization and oxidative stress response of an intracellular Cu/Zn superoxide dismutase (CuZnSOD) of the whitefly, Bemisia tabaci. Arch Insect Biochem. 2011;77:118–133.
  • Appel HM.. The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals and insect pathogens. In: Bernays EA, editor. Insect-Plant Interactions. Vol V. Boca Raton, FL: CRC Press; 1994:209–223.
  • Rosen GM, Britigan BE, Halpern HJ, Pou S. Free Radicals: Biology and Detection by Spin Trapping. Oxford: Oxford University Press; 1999.